Lunar Sourcebook
a user's guide to the moon

edited by Grant H. Heiken, David T. Vaniman, and Bevan M. French

foreword by Harrison H. Schmitt
The *Lunar Sourcebook*, a concisely presented collection of data gathered during the American and Soviet missions, is an accessible and complete one-volume reference encyclopedia of current scientific and technical information about the Moon. This book provides a thorough introduction to lunar studies and a summary of current information about the nature of the lunar environment. It explores the formation and evolution of the Moon’s surface, the chemical and mineralogical nature of lunar rocks and soils, and the current state of scientific knowledge about the nature, origin, and history of the Moon.

The book is written and edited by scientists active in every field of lunar research, all of whom are veterans of the Apollo program. The contributors are from universities, national laboratories, industry, and NASA.
Lunar Sourcebook
To those who have been there —
And to those who will return.
## CONTENTS

Contributors     xi
Foreword         xiii
Editor’s Preface and Acknowledgments  xv
Units and Abbreviations     xvii
Lunar Databases and Archives  xix

### Chapter 1: INTRODUCTION

1.1. USING THE MOON: AVAILABLE DATA  1
1.2. THE CONTENTS OF THIS BOOK  2

### Chapter 2: EXPLORATION, SAMPLES, AND RECENT CONCEPTS OF THE MOON

2.1. LUNAR EXPLORATION 5
2.2. LUNAR SAMPLES 6
   2.2.1. The Apollo Collection 6
   2.2.2. Lunar Sample Identification 8
2.3. NEW VIEWS OF THE MOON FROM EXPLORATION 10
2.4. NEW CONCEPTS OF THE MOON FOLLOWING EXPLORATION 13
   2.4.1. Origin of the Moon 13
   2.4.2. Diversity of Lunar Rock Types 13
   2.4.3. Differentiation of the Moon and Origin of the Lunar Crust 15
   2.4.4. The Present View of Lunar Magmatic Evolution 19
APPENDIX: APOLLO SAMPLE TYPES AND LUNAR SAMPLE CURATION 21
A2.1. Apollo Sample Types 21
A2.2. Lunar Sample Curation 23
A2.3. Curation History 25

### Chapter 3: THE LUNAR ENVIRONMENT

3.1. EARTH AND MOON COMPARED 27
3.2. THE ASTRONAUT EXPERIENCE 27
3.3. TERRAIN
   3.3.1. Mare Surfaces 30
   3.3.2. Large-scale Ejecta Ridges 31
   3.3.3. Lunar Highlands 32
   3.3.4. Highlands-Mare Boundaries (Basin Margins) 32
   3.3.5. Other Parts of the Moon 34
3.4. DUST 34
3.5. TEMPERATURES ON THE LUNAR SURFACE 34
3.6. LUNAR HEAT FLOW 36
   3.6.1. Heat Flow at the Apollo 15 Landing Site 37
   3.6.2. Heat Flow at the Apollo 17 Landing Site 37
   3.6.3. Conclusions 38
3.7. SEISMIC ACTIVITY 38
3.8. POLAR ENVIRONMENT 39
3.9. ATMOSPHERE 40
   3.9.1. Contamination 41
   3.9.2. The Real Lunar Atmosphere 42
   3.9.3. The Fast and Future of the Lunar Atmosphere 43
## Chapter 4: LUNAR SURFACE PROCESSES

### 4.1. IMPACT PROCESSES
- 4.1.1. The Morphology of Impact Structures
- 4.1.2. The Cratering Process
- 4.1.3. Crater Frequency and Bombardment History
- 4.1.4. Geological Processes

### 4.2. BASALTIC VOLCANISM
- 4.2.1. Volcanic Landforms
- 4.2.2. Filling of the Maria
- 4.2.3. Volume Estimates of Basaltic Mare Fill

### 4.3. TECTONIC ACTIVITY
- 4.3.1. External Forces
- 4.3.2. Internal Forces

### 4.4. LUNAR STRATIGRAPHY

## Chapter 5: LUNAR MINERALS

### 5.1. SILICATE MINERALS
- 5.1.1. Pyroxene
- 5.1.2. Plagioclase Feldspar
- 5.1.3. Olivine
- 5.1.4. Silica Minerals: Quartz, Cristobalite, and Tridymite
- 5.1.5. Other Silicate Minerals
- 5.1.6. Comparative Silicate Mineralogy: Earth-Moon

### 5.2. OXIDE MINERALS
- 5.2.1. Ilmenite
- 5.2.2. Spinels
- 5.2.3. Armalcolite
- 5.2.4. Other Oxides

### 5.3. SULFIDE MINERALS
- 5.3.1. Trolite
- 5.3.2. Other Sulfides

### 5.4. NATIVE FE
- 5.4.1. Meteoritic Contamination
- 5.4.2. Native Fe in Lunar Rocks
- 5.4.3. Native Fe in Lunar Soil

### 5.5. PHOSPHATE MINERALS

### APPENDIX: COMPOSITIONS OF LUNAR MINERALS
Chapter 6: LUNAR ROCKS

6.1. MARE BASALTIC LAVAS AND VOLCANIC GLASSES
   6.1.1. Chemical Composition, Classification, and Properties of Mare Basalts
   6.1.2. Mineralogy of Mare Basalts
   6.1.3. Textures of Mare Basalts
   6.1.4. Crystallization Experiments on Mare Basalts
   6.1.5. Cooling Rates of Mare Basalts
   6.1.6. Vesicles and Nature of the Gas Phase
   6.1.7. Lunar Pyroclastic Deposits
   6.1.8. Experimental Petrology and Phase Relations
   6.1.9. Ages of Mare Basalts

6.2. EXTENDED MAPPING OF MARE LAVAS AND PYROCLASTIC DEPOSITS

   BY REMOTE SPECTRAL OBSERVATIONS
   6.2.1. Techniques
   6.2.2. Regional Distribution of Mare Basalts and Pyroclastic Glasses

6.3. HIGHLAND PRISTINE ROCKS: IGNEOUS ROCKS AND MONOMICT BRECCIAS
   6.3.1. Classification of Pristine Igneous Highland Rocks
   6.3.2. KREEP Rocks
   6.3.3. Ferroan Anorthosites
   6.3.4. Mg-rich Rocks
   6.3.5. Other Pristine Highland Rock Types

6.4. HIGHLAND POLYMICT BRECCIAS
   6.4.1. Nomenclature and Classification
   6.4.2. Fragmental Breccias
   6.4.3. Glassy Melt Breccias and Impact Glasses
   6.4.4. Crystalline Melt Breccias or Impact-Melt Breccias
   6.4.5. Clast-poor Impact Melts
   6.4.6. Granulitic Breccias and Granulites
   6.4.7. Dimict Breccias
   6.4.8. Regolith Breccias

6.5. SPECTRAL PROPERTIES OF HIGHLAND ROCKS

APPENDIX: CHEMICAL DATA FOR LUNAR ROCKS

Chapter 7: THE LUNAR REGOLITH

7.1. LUNAR SOIL
   7.1.1. General Description
   7.1.2. Petrography
   7.1.3. Agglutinates
   7.1.4. Other Unusual Soil Components
   7.1.5. Grain Shapes and Surfaces
   7.1.6. Grain-size Characteristics
   7.1.7. Chemical Composition of Lunar Soils

7.2. SPECTRAL PROPERTIES OF THE LUNAR REGOLITH

7.3. REGOLITH EVOLUTION AND MATURITY
   7.3.1. Maturation by Meteoroid Bombardment
   7.3.2. Maturation by Ionizing Radiation
   7.3.3. Maturity Indices and Their Use
   7.3.4. Regolith Processes and Maturity

7.4. VARIATION OF SOILS WITH DEPTH: THE LUNAR CORE SAMPLES
   7.4.1. General Characteristics of Lunar Regolith Core Samples
   7.4.2. Variations with Depth in Regolith Core Samples
   7.4.3. Regolith Stratigraphy
7.5. MODELS FOR REGOLITH FORMATION
7.5.1. Regolith Dynamics 342
7.5.2. Grain-size Distributions 343
7.5.3. Differential Comminution 344
7.5.4. Comparison of Soil Chemistry with Bedrock Chemistry 345
7.5.5. Variation of Soil Chemistry Within Sites 345
7.5.6. Variation of Soil Chemistry Between Sites 351
7.6. REGOLITH BRECCIAS 352
7.7. THE RECORD OF SOLAR HISTORY PRESERVED IN THE LUNAR REGOLITH 354
7.7.1. A Summary of Historical Results 354
7.7.2. Solar-Wind History 355
7.7.3. Solar-Flare History 356
7.7.4. Galactic-Cosmic-Ray History 356

Chapter 8: CHEMISTRY 357
8.1. WHERE TO FIND A PARTICULAR ELEMENT DISCUSSED 359
8.1.1. Organization of the Data 359
8.1.2. Types of Lunar Materials Considered 359
8.1.3. Cautions on Data Use 361
8.2. OVERVIEW OF PLANETARY SEPARATION PROCESSES 361
8.3. MAJOR ELEMENTS 363
8.3.1. Concentrations of Major Elements in the Moon 363
8.3.2. Minerals and Rocks Formed by Major Elements 363
8.3.3. Abundances and Correlations Among Major Elements 366
8.3.4. Ores of Major Elements 371
8.4. INCOMPATIBLE TRACE ELEMENTS 372
8.4.1. Abundances of Incompatible Trace Elements in Lunar Crustal Materials 372
8.4.2. Incompatible Trace Elements in Lunar Highland Materials: KREEP 380
8.4.3. Incompatible Trace Elements in the Lunar Maria 386
8.5. MISCELLANEOUS MINOR ELEMENTS 390
8.5.1. Data Sources 390
8.5.2. Phosphorus, Potassium, and Barium 390
8.5.3. Scandium, Vanadium, Chromium, and Manganese 391
8.5.4. Sulfur, Cobalt, and Nickel 398
8.5.5. Gallium and Strontium 398
8.5.6. Possible Lunar Ores of the Miscellaneous Minor Elements 398
8.6. SIDEROPHILE ELEMENTS 399
8.6.1. Analytical Difficulties 400
8.6.2. Iridium: The “Type” Siderophile Element 404
8.6.3. Other Siderophile Elements 405
8.6.4. Siderophile-Element Fractionations Related to Grain Size in Lunar Soils 413
8.6.5. Possible Lunar Ores of Siderophile Elements 414
8.7. VAPOR-MOBILIZED ELEMENTS 414
8.7.1. Concentration Levels 414
8.7.2. Meteoroid Additions to the Regolith 419
8.7.3. Vapor-Mobilized Elements as Incompatible Trace Elements: Indigenous Concentrations in Lunar Materials 422
8.7.4. Vapor-Phase Transport of Vapor-Mobilized Elements 424
8.7.5. Pyroclastic Volcanic Emissions as an Indigenous Source of Vapor-Mobilized Elements 427
8.7.6. Surface Mobility of Vapor-Mobilized Elements 430
8.7.7. Sulfur 432
Chapter 11: AFTERWORD

11.1. RETURN TO THE MOON
11.2. CURRENT UNDERSTANDING OF THE MOON: A BASE FOR PLANNING
   11.2.1. The Post-Apollo Moon
   11.2.2. Environmental Impacts
11.3. GOALS FOR FUTURE LUNAR EXPLORATION
   11.3.1. Science
   11.3.2. Transportation
   11.3.3. Resources
   11.3.4. Benefits to Future Astronauts: Terra Firma Nova
11.4. UNANSWERED QUESTIONS ABOUT THE MOON
   11.4.1. The Lunar Environment
   11.4.2. Lunar Surface Processes and Evolution
   11.4.3. Lunar Minerals, Rocks, and Soils
   11.4.4. Lunar Chemistry
   11.4.5. Lunar Physical Properties
   11.4.6. Global Lunar Data and Future Mapping
11.5. THE NEXT STEPS
11.6. A PERMANENT PRESENCE

APPENDIX A11.1: STUDIES IN LUNAR UTILIZATION
APPENDIX A11.2: LUNAR RESOURCES
   A11.2.1. Aluminum
   A11.2.2. Helium-3
   A11.2.3. Hydrogen
   A11.2.4. Iron
   A11.2.5. Oxygen
   A11.2.6. Regolith
APPENDIX A11.3: SUMMARY OF UNANSWERED QUESTIONS ABOUT THE MOON

References

Sample Index

Subject Index
CONTRIBUTORS

Editors

Grant H. Heiken, Los Alamos National Laboratory
David T. Vaniman, Los Alamos National Laboratory
Bevan M. French, National Aeronautics and Space Administration

Contributors

Abhijit Basu, Indiana University
Alan Binder, Lockheed Engineering and Science Company
George Blanford, University of Houston, Clear Lake
W. David Carrier III, Lunar Geotechnical Institute
John Delano, State University of New York, Albany
John Dietrich, NASA Johnson Space Center
Bevan M. French, National Aeronautics and Space Administration
Richard Grieve, Geological Survey of Canada
Larry Haskin, Washington University
Grant Heiken, Los Alamos National Laboratory
Gary Lofgren, NASA Johnson Space Center
Friedrich Hörz, NASA Johnson Space Center
David S. McKay, NASA Johnson Space Center
Wendell Mendell, NASA Johnson Space Center
Gary Olhoeft, U.S. Geological Survey
James J. Papike, South Dakota School of Mines and Technology and University of New Mexico
Carlé Pieters, Brown University
Robert Reedy, Los Alamos National Laboratory
Graham Ryder, Lunar and Planetary Institute
Steven Simon, University of Chicago
Paul Spudis, U.S. Geological Survey
G. Jeffrey Taylor, University of New Mexico and University of Hawaii
Lawrence A. Taylor, University of Tennessee
David Vaniman, Los Alamos National Laboratory
Paul Warren, University of California, Los Angeles

Lunar and Planetary Institute Publications Services Staff

Editorial:
Renee Dotson
Stephanie Tindell
Sarah Enticknap
Joan Shack
Karen Hrametz
Lunar and Planetary Institute Publications Services Staff (continued)

Graphic Design:
Stephen L Hokanson
Donna Jalufka
Pam Thompson
Shirley Brune
Ronna Hurd
Christy Owens

Typesetting
Linda Tanner
Deborah Barron
Shantha Elluru
Pam Thompson
Carl Grossman
Cindy Schwartz
Janet Martin

Lunar and Planetary Institute Computer Services

Kin Leung
Jackie Lyon

Lunar and Planetary Institute Center for Information and Research Services

Cathy Fischer
Mary Ann Hager
Debra Rueb
Stephen Tellier
Fran Waranius

Other Editing Assistance

Mary-Hill French

Chapter Reviewers

Mark Cintala, NASA Johnson Space Center; Mike Gibson, Carbotek; Stephen Haggerty, University of Massachusetts; Steve Howe, Los Alamos National Laboratory; John Kerridge, University of California, Los Angeles; Randy Korotev, Washington University; James K. Mitchell, University of California, Berkeley; William Phinney, NASA Johnson Space Center; Ron Scott, California Institute of Technology; John Shervais, University of South Carolina; Jeffrey L Warner, Chevron Oil Field Research Company; Herb Zook, NASA Johnson Space Center; and contributors who reviewed chapters other than their own.
Humankind sought and attained greatness with the first field explorations of the Moon between 1966 and 1976. Apollo spacecraft and the various automated probes launched by the U.S. and the U.S.S.R., which successfully collected samples and information from the Moon during this period, pushed the species along its first clear steps of evolution into the solar system and eventually into the galaxy. A sense of reality began to surround a lesson taught to the Pueblo Indians by their ancestors: “We walk on the Earth, but we live in the sky.”

Early explorers of the sky took their eyes and minds into space and became the eyes and minds of billions of other explorers on the starship Earth. They also began the long process of transplanting civilization into space. This fundamental change in the course of history has occurred as humans have also gained new insight into themselves and their first planetary home. With the conclusion of the Apollo 17 mission and the Apollo program in December 1972, humankind had reached the “end of the beginning” of its movement into the universe.

Human evolution into the universe began with the 1968 Christmas Eve mission of Apollo 8. The presence of Frank Borman, Jim Lovell, and Bill Anders in orbit around the Moon, and the words and pictures they shared with us, gave human beings a new awareness not only of the Moon but of the Earth’s own place as a lonesome, lovely, and potentially fragile life-bearing planet in the black void of space. Hundreds of millions of human beings throughout the world simultaneously thought new thoughts about a familiar object in the night sky—the Moon. The men of Apollo 8 were there, and the Moon would never be the same for anyone.

Now we should realize that the Earth will also never be the same. Through new communication, information, and space technologies, solutions can be found to the age-old problems of the human condition on Earth—ignorance, poverty, hunger, and disease. Opportunities have been created to realize the more modern dream of living permanently in space. Such solutions and opportunities exist, however, only if we are wise enough to reach out and grasp them.

President George Bush’s statement on the occasion of the 20th anniversary of Apollo 11’s landing on the Moon provides a vision of human beings as a perpetual spacefaring species. The President’s words implied a commitment to protect the Earth, settle the solar system, and move toward the stars.

The Moon’s proximity to the Earth, lack of atmosphere, gravity (only one-sixth that of the Earth), planetary position as the smallest of the terrestrial planets, and potential resources almost certainly assure a role for lunar activities in support of human exploration and utilization of space.

Proximity, one-sixth gravity, and potential resources essential to sustaining human life require that the Moon be considered as both a stepping stone toward Mars and the outer planets and a low-cost supply depot for exploration and settlement. Its planetary characteristics and lack of atmosphere justify the continued use of the Moon as a natural laboratory for comparative planetology and for solar and stellar astronomy.

In the context of these possibilities, as well as in even more general terms, Lunar Sourcebook provides an extremely important and heretofore unavailable first reference for those who may consider a return to the Moon for whatever purpose. The information compiled within and the guide to other data provided distills and, in one sense, immortalizes the dedication, imagination, and extraordinary hard work of hundreds of managers, scientists, engineers, and their supporters. Now others can begin to move forward to plan, in President Bush’s words, a “. . . return to the Moon, this time to stay . . .”

One can only vaguely imagine the ultimate legacy of the data from Apollo, the automated probes, and Earth-based observation through which Lunar Sourcebook guides its reader. The more easily conceived possibilities include permanent and self-sustaining settlements on the Moon,
serving solar and stellar observatories and far-ranging lunar surface expeditions; lunar engineering and training sites supporting the development of Mars exploration and settlement; huge solar collector arrays on the Moon producing the energy needed to support lunar activities as well as for potential export to Earth and to stations in space; underground mines in stratified mineral deposits within the mare that provide raw materials to space equipment manufacturing facilities on the Moon or in lunar orbit; and great farms that produce the food required by increasing numbers of men and women living in space, on the Moon, and on Mars.

Perhaps most critically, one can imagine large mobile processing plants, periodically stepping their way across the lunar maria, mining, extracting, and processing solar-wind gases from the regolith, to provide the life-sustaining consumables (H₂, O₂, H₂O, CO₂, NOₓ, and ⁴He) required by a spacefaring species. From solar-wind materials implanted in the lunar regolith, we may also extract the environmentally benign fusion fuel ³He, which can be used on Earth to sustain civilization as well as protect the biosphere.

On behalf of those privileged few who helped gather the samples, collect field information, and deploy the experiments that provided the data upon which much of this book draws, I wish to thank the editors and their contributor team for stepping once more into the breach. They have added great new value to the lunar exploration community’s efforts. Unless what has been learned as a consequence of our activities becomes accessible, we, like the tree falling in the forest, have made no sound for those not present to hear. Lunar Sourcebook not only brings many individual sounds together into the beginnings of a symphony, but it serves waiting and appreciative new generations of composers and audiences.

Harrison H. Schmitt, Apollo 17 astronaut
Albuquerque, New Mexico
September 20, 1990
Lunar Sourcebook is intended for the post-Apollo generation of scientists, engineers, teachers, and students. It has two purposes. First, it summarizes what we know about the Moon as a result of U.S. and U.S.S.R. lunar missions and the continuing analysis of lunar samples and data here on Earth. Second, it provides a convenient, accessible sourcebook for planning the future study of the Moon and the eventual use of the Moon by spacefaring humans.

This book began in 1984, and we were at the active manuscript-editing stage on July 20, 1989, when President George Bush marked the 20th anniversary of the Apollo 11 landing by initiating what is now called the Space Exploration Initiative (or sometimes the Moon-Mars initiative), a program for the return of humans to the Moon, followed by human exploration of the planet Mars. We hope that Lunar Sourcebook will be a timely response to the renewed scientific and exploration interest in our nearest planetary neighbor, the only other world so far explored in person by human beings. We also hope that the book will help in our return to the Moon, and in the intelligent use of the Moon when we establish a permanent presence there.

The task of putting everything we know about the whole Moon into a single book is far more difficult now than it was before the Apollo program. Before Apollo, only a few people were needed to summarize the available information about the Moon, and they could (and did) produce books from their own knowledge. The Apollo and Luna programs, with their intensive close-up studies and the return of samples to Earth, have produced an explosion in lunar knowledge. The available scientific information about the Moon is now scattered throughout many books and thousands of articles in journals from a wide range of scientific disciplines: astronomy, geosciences, nuclear chemistry, space physics, materials science, life sciences, and engineering, to name just a few.

In this post-Apollo age, assembling Lunar Sourcebook would have been impossible without help from many different people. We owe the most to our scientist-authors for sifting the immense amount of knowledge in each field, organizing it, and then patiently enduring multiple syntheses, continuing editorial changes, extensive rewriting, and doubts that their work would ever see daylight on a printed page.

The editorial and production staff at the Lunar and Planetary Institute (LPI) in Houston, Texas, worked hard and patiently—literally for years—to turn an overwhelming amount of manuscript pages and disorganized art work into an attractive and readable text. Renee Dotson, as technical editor at the LPI, suffered (with remarkable equanimity) through enough versions of this book to fill her bookshelves. The excellent illustration work by Donna Jalufka, Pam Thompson, Shirley Brune, and others at the LPI, with special notice of the herculean effort and dedication of Steve Hokanson, resulted in a set of polished figures that were often compiled from crude sketches and all too often forced through time-consuming revisions. We also thank our editors at Cambridge University Press in New York, Peter-John Leone and Nancy Seltzer, for their faith in the whole project and their patience with an unexpectedly long process.

The support of NASA, through contract NASW-4066 to the Lunar and Planetary Institute, was critical to this work, and we are particularly grateful for the patience and steady encouragement of Dr. William L. Quaide, Chief Scientist for the Solar System Exploration Division.

At Los Alamos, the continued moral support by Wayne Morris, Wes Myers, and P. W. Keaton made it possible for us to carry through the editing process over many years; Marcia Jones and Barbara Hahn contributed to the word processing when we could not keep up. We also owe a great deal to our families, who gave up countless weekends and evenings for the book. Finally, we especially thank Mary-Hill French for intense and meticulous proofreading, with an uncanny knack for finding errors that had eluded us.

Grant H. Heiken and David T Vaniman
Earth and Environmental Sciences Division
Los Alamos National Laboratory
Los Alamos, New Mexico 87545

Bevan M French
Solar System Exploration Division
National Aeronautics and Space Administration Headquarters
Washington, DC 20546
## UNITS AND ABBREVIATIONS*

<table>
<thead>
<tr>
<th>Unit</th>
<th>Abbreviation</th>
<th>Unit</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>absolute permeability</td>
<td>K</td>
<td>Kelvin</td>
<td>K</td>
</tr>
<tr>
<td>activation energy</td>
<td>E</td>
<td>kilobar</td>
<td>kbar</td>
</tr>
<tr>
<td>angstrom</td>
<td>Å</td>
<td>kilocalorie</td>
<td>kcal</td>
</tr>
<tr>
<td>antenna gain</td>
<td>G</td>
<td>kiloelectron volt</td>
<td>keV</td>
</tr>
<tr>
<td>ampere</td>
<td>A</td>
<td>kilogram</td>
<td>kg</td>
</tr>
<tr>
<td>astronomical unit (1.496 x 10^8 km)</td>
<td>A.U.</td>
<td>kilohertz</td>
<td>kHz</td>
</tr>
<tr>
<td>atomic mass unit</td>
<td>amu</td>
<td>kilometer</td>
<td>km</td>
</tr>
<tr>
<td>billion years</td>
<td>b.y.</td>
<td>kilopascal</td>
<td>kPa</td>
</tr>
<tr>
<td>bulk density</td>
<td>ρ</td>
<td>kilowatts electric</td>
<td>kWel</td>
</tr>
<tr>
<td>centimeter</td>
<td>cm</td>
<td>kurtosis (statistical)</td>
<td>Ko</td>
</tr>
<tr>
<td>coefficient of lateral stress</td>
<td>K_o</td>
<td>loss tangent</td>
<td>tan δ</td>
</tr>
<tr>
<td>cohesion</td>
<td>c</td>
<td>magnetic field strength</td>
<td>A/m, γ</td>
</tr>
<tr>
<td>Cole-Cole frequency distribution</td>
<td></td>
<td>mean (statistical)</td>
<td>x, M/z</td>
</tr>
<tr>
<td>parameter</td>
<td>α</td>
<td>median (statistical)</td>
<td>Md</td>
</tr>
<tr>
<td>compression index</td>
<td>C,</td>
<td>megaelectron volt</td>
<td>MeV</td>
</tr>
<tr>
<td>conductance (1/ohm)</td>
<td>mho</td>
<td>meter</td>
<td>m</td>
</tr>
<tr>
<td>conductivity</td>
<td>σ</td>
<td>metric ton (tonne)</td>
<td>t</td>
</tr>
<tr>
<td>cone penetration resistance</td>
<td>q</td>
<td>microgram</td>
<td>μg</td>
</tr>
<tr>
<td>degree Celsius</td>
<td>°C</td>
<td>micrometer</td>
<td>μm</td>
</tr>
<tr>
<td>degree of polarization</td>
<td>P</td>
<td>millilgal</td>
<td>mgal</td>
</tr>
<tr>
<td>density of water</td>
<td>ρ_w</td>
<td>milligram</td>
<td>mg</td>
</tr>
<tr>
<td>depth into regolith (cm)</td>
<td>z</td>
<td>millimeter</td>
<td>mm</td>
</tr>
<tr>
<td>equivalent surface area ratio</td>
<td>ESAR</td>
<td>million years</td>
<td>m.y.</td>
</tr>
<tr>
<td>electron volt</td>
<td>eV</td>
<td>millisecond</td>
<td>msec</td>
</tr>
<tr>
<td>factor of safety</td>
<td>F.S.</td>
<td>milliwatt</td>
<td>mW</td>
</tr>
<tr>
<td>ferromagnetic resonance intensity</td>
<td>I_s</td>
<td>minutes</td>
<td>min</td>
</tr>
<tr>
<td>flow rate</td>
<td>Q</td>
<td>mole</td>
<td>mol</td>
</tr>
<tr>
<td>Fresnel reflection coefficient</td>
<td>ρ</td>
<td>mole percent</td>
<td>mol.%</td>
</tr>
<tr>
<td>friction angle</td>
<td>ϕ (degrees)</td>
<td>nanogram</td>
<td>ng</td>
</tr>
<tr>
<td>galactic cosmic ray</td>
<td>GCR</td>
<td>nanometer</td>
<td>nm</td>
</tr>
<tr>
<td>gamma (10^{-5} oersted)</td>
<td>γ</td>
<td>normal stress</td>
<td>σ</td>
</tr>
<tr>
<td>geometrical albedo</td>
<td>p</td>
<td>newton</td>
<td>N</td>
</tr>
<tr>
<td>gigaelectron volt</td>
<td>GeV</td>
<td>nucleon</td>
<td>u</td>
</tr>
<tr>
<td>gram</td>
<td>g</td>
<td>parts per billion by weight</td>
<td>ng/g</td>
</tr>
<tr>
<td>gross pull per wheel (N)</td>
<td>H</td>
<td>parts per million by weight</td>
<td>μg/g</td>
</tr>
<tr>
<td>Hertz</td>
<td>Hz</td>
<td>parts per thousand</td>
<td>%o</td>
</tr>
<tr>
<td>horizontal stress</td>
<td>σ_h</td>
<td>Pascal</td>
<td>Pa</td>
</tr>
<tr>
<td>hour</td>
<td>hr</td>
<td>phase angle (optical)</td>
<td>g</td>
</tr>
<tr>
<td>initial relative density</td>
<td>D_Ri</td>
<td>phase integral (optical)</td>
<td>q</td>
</tr>
<tr>
<td>integrated mass depth</td>
<td>d_m</td>
<td>phi scale (grain size)</td>
<td>ϕ</td>
</tr>
<tr>
<td>joule</td>
<td>J</td>
<td>poise</td>
<td>p</td>
</tr>
</tbody>
</table>

* Note multiple uses of the symbols G, k, p, W, α, and σ. Units and abbreviations that are explicitly defined where they are used in the text are not listed here.
**UNITS AND ABBREVIATIONS (continued)**

<table>
<thead>
<tr>
<th>Unit</th>
<th>Abbreviation</th>
<th>Unit</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>porosity (in situ)</td>
<td>n</td>
<td>specific gravity</td>
<td>G</td>
</tr>
<tr>
<td>P-wave velocity</td>
<td>$\alpha$</td>
<td>specific surface area</td>
<td>SSA</td>
</tr>
<tr>
<td>radar cross-section</td>
<td>$\sigma$</td>
<td>static allowable bearing capacity</td>
<td>$q_{\text{all}}$</td>
</tr>
<tr>
<td>received echo power (radar)</td>
<td>$P_r$</td>
<td>static ultimate bearing capacity</td>
<td>$q_{\text{ult}}$</td>
</tr>
<tr>
<td>recompression index</td>
<td>$C_r$</td>
<td>steradian</td>
<td>sr</td>
</tr>
<tr>
<td>relative density</td>
<td>$D_R$</td>
<td>subradar point</td>
<td>i</td>
</tr>
<tr>
<td>relative dielectric permittivity</td>
<td>$k$</td>
<td>torricelli</td>
<td>torr</td>
</tr>
<tr>
<td>seismic attenuation</td>
<td>$Q$</td>
<td>wavelength</td>
<td>$\gamma$</td>
</tr>
<tr>
<td>second</td>
<td>$\text{sec}$</td>
<td>wheel load (N)</td>
<td>W</td>
</tr>
<tr>
<td>shear strength</td>
<td>$\tau$</td>
<td>vertical stress</td>
<td>$\sigma_v$</td>
</tr>
<tr>
<td>skewness (statistical)</td>
<td>SK, $\alpha_3$</td>
<td>void ratio</td>
<td>e</td>
</tr>
<tr>
<td>soil compaction resistance per wheel (N)</td>
<td>$R_c$</td>
<td>volume percent</td>
<td>vol.%</td>
</tr>
<tr>
<td>solar cosmic ray</td>
<td>SCR</td>
<td>weight percent</td>
<td>wt.%</td>
</tr>
<tr>
<td>sorting (statistical)</td>
<td>$\sigma$</td>
<td>year</td>
<td>yr</td>
</tr>
</tbody>
</table>
Manned and unmanned missions to the Moon were responsible for an enormous volume of diverse data, ranging from measurements of the tenuous lunar magnetic field to sample analyses. Most of these data and reports are available to researchers, at the cost of transferring the information or images.

**Lunar and Planetary Institute (LPI).** The best place to begin your search for lunar data is the Lunar and Planetary Institute, 3303 NASA Road 1, Houston, Texas 77058-4399. The LPI was established by NASA as the Lunar Science Institute in 1969 and is managed by the Universities Space Research Association. The Center for Information and Research Services (CIRS) contains lunar and planetary photographs, maps, reports, and lunar sample information. CIRS also maintains a lunar and planetary bibliography and a literature collection to support the bibliography. The LPI Geophysical Data Facility has a selection of Moon datasets.

**National Space Science Data Center (NSSDC).** Documents, imagery, and geophysical data are available from the NSSDC. For U.S. investigators, the address is National Space Science Data Center, Code 601.4, NASA Goddard Space Flight Center, Greenbelt, Maryland 20771. For researchers outside of the United States, the address is World Data Center A, Rockets and Satellites, Code 601, NASA Goddard Space Flight Center, Greenbelt, Maryland 20771 USA. The database includes images, reports, and geophysical data from the Ranger, Surveyor, Lunar Orbiter, Apollo, Luna, and Zond Programs. A comprehensive catalog was published by W. S. Cameron, E. J. Mantel, and E. R Miller (1977) *Catalog of Lunar Mission Data, NSSDC/WDC-ARS* Document #77-02, 204 pp.

**National Technical Information Service (NTIS).** For out-of-print reports, facsimile paper copies or microfiche can be ordered from NTIS, 5825 Port Royal Road, Springfield, Virginia 22152.

**NASA Johnson Space Center History Office.** Over 30,000 documents from the Apollo program have been saved as an archive for the purpose of historical studies by the History Office, NASA Johnson Space Center, Code BY4, 2101 NASA Road 1, Houston, Texas 77058-3696. The materials are arranged and described according to accepted archival practice and in a computer index. This office has also published excellent histories of the Apollo program [C. G. Brooks, J. Grimwood, and L Swenson Jr. (1979) *Chariots for Apollo: A History of Manned Lunar Spacecraft* NASA SP-4205, 553 pp.; W. D. Compton (1989) *Where No Man Has Gone Before: A History of Apollo Lunar Exploration Missions*, NASA SP-4214, 415 pp.]

**NASA Johnson Space Center Lunar Sample Curatorial Facility.** To obtain lunar samples, a researcher must submit a request to the Lunar Sample Curator, Code SN2, NASA Johnson Space Center, Houston, Texas 77058-3696. This request will be reviewed by NASA’s Lunar and Planetary Sample Team. Sample histories are also available from the Curator (see Appendix to Chapter 2).

---

**Regional Planetary Image Facilities.** The system of Regional Planetary Image Facilities (RPIF) represents a coordinated effort to provide easy access to planetary data products by scientists, students, educators, and the general public. Although each facility has different specific strengths, the close cooperation among RPIF members permits accessing materials without unnecessary trips to more distant centers. The RPIFs are not designed to provide hard-copy products for permanent retention, but are established to provide assistance in both locating the necessary data products and in accessing them through the NSSDC. RPIF facilities are located:

- **Arizona State University**
  - Department of Geology
  - Tempe, Arizona 85287

- **Brown University**
  - Box 1846
  - Department of Geological Sciences
  - Providence, Rhode Island 02912

- **Cornell University**
  - Center for Radiophysics and Space Research
  - Ithaca, New York 14853

- **Jet Propulsion Laboratory**
  - Mail Stop 202-101
  - 4800 Oak Grove Drive
  - Pasadena, California 91109

- **Lunar and Planetary Institute**
  - Center for Information and Research Services
  - 3303 NASA Road 1
  - Houston, Texas 77058-4399

- **National Air and Space Museum**
  - Center for Earth and Planetary Studies
  - Room 3101
  - Washington, DC 20560

- **University of Arizona**
  - Lunar and Planetary Laboratory
  - Tucson, Arizona 85721

- **University of Hawaii**
  - Planetary Geosciences Division
  - 2525 Correa Road
  - Honolulu, Hawaii 96822

- **University of London**
  - Observatory Annexe
  - 33/35 Daws Lane
  - London, NW7 4SD

- **University of Rome**
  - Istituto Astrofisica Spaziale
  - Viale Dell Universita, 11
  - 00185 Roma ITALY

- **University of Washington**
  - Department of Earth and Planetary Sciences
  - One Brooking Drive
  - St. Louis, Missouri 63130-4899

- **Istituto Astrofisica Spaziale**
  - Reparto di Planetologia
  - Viale Dell Universita, 11
  - 00185 Roma ITALY

- **University of London Observatory**
  - 33/35 Daws Lane
  - Observatory Annex
  - London, NW7 4SD

- **University of Rome**
  - Istituto Astrofisica Spaziale
  - Viale Dell Universita, 11
  - 00185 Roma ITALY

- **University of Washington**
  - Department of Earth and Planetary Sciences
  - One Brooking Drive
  - St. Louis, Missouri 63130-4899

- **Phototheque Planetaire**
  - Université Paris-Sud
  - Laboratoire de Géologie
  - Orsay Cedex FRANCE

- **University of Rome**
  - Istituto Astrofisica Spaziale
  - Viale Dell Universita, 11
  - 00185 Roma ITALY

*Note added in proof: These addresses were current at the time of publication (1991). For an updated list of RPIFs, go to [http://www.lpi.usra.edu/library/RPIF/index.shtml](http://www.lpi.usra.edu/library/RPIF/index.shtml).*