LUNAR STRATIGRAPHY AND SEDIMENTOLOGY
Developments in Solar System- and Space Science, 3

Editors: Z. KOPAL and A.G.W. CAMERON
LUNAR STRATIGRAPHY
AND SEDIMENTOLOGY

by

JOHN F. LINDSAY

The Lunar Science Institute, Houston, Texas, U.S.A.
and
The Marine Science Institute, The University of Texas, Galveston, Texas, U.S.A.
TO

The Apollo Astronauts.
The moon is nothing
But a circumambulatory aphrodisiac
Divinely subsidized to provoke the world
Into a rising birthrate.

The Lady’s Not For Burning
Christopher Fry, 1950
The dominant processes operative in shaping the lunar surface are very different from those acting on the earth’s surface. The main differences between the two planets relate to the way in which available energy is used in the sedimentary environment. Sedimentary processes on the earth’s surface are determined largely by solar energy interacting with the atmosphere and hydrosphere which act as intermediaries converting radiative solar energy to effective erosional and transportation energy by way of rivers, glaciers, ocean waves and so on. The moon is essentially free of both an atmosphere and hydrosphere and as a consequence solar energy is largely ineffective in the sedimentary environment. Instead lunar sedimentary processes are dominated by kinetic energy released by impacting meteoroids.

In the early stages of the Apollo program considerable attention was given to locating landing sites which would provide the best opportunity of sampling the primitive lunar crust. As the Apollo program progressed it became apparent that most of the rocks available at the lunar surface were in fact “breccias” or “clastic rocks” or in a more general sense “sedimentary rocks.” The moon’s crust was much more complex than anyone might have guessed. This book is an attempt to organize some of the information now available about the sedimentary rocks forming the lunar crust in a way that allows some comparison with the terrestrial sedimentary environment.

There are essentially three parts to the book. Chapter 1 presents a very brief view of the moon as a planetary body to establish a perspective for the following chapters. Chapters 2 and 3 evaluate the energy sources available in the lunar sedimentary environment. Because of their predominance in the lunar environment meteoritic processes are treated in considerable detail. Chapters 4, 5 and 6 bring together information on the general geology of the lunar crust and detailed information from some sedimentary units sampled during the Apollo missions.

A large number of people have contributed in various ways to make it possible for me to write this book and I am grateful for their assistance. In the early stages Dr. J. Head, then acting director of the Lunar Science Institute, Houston, Texas, encouraged me to begin the book and Prof. Alan
White, La Trobe University, Melbourne, Australia, generously allowed me considerable time away from teaching duties. Much of the work on the book was done while I was a Visiting Scientist at the Lunar Science Institute and I am especially grateful to Dr. R. Pepin the director of that institute for his encouragement and for considerable support in the preparation of the manuscript and diagrams. Many other staff members of the Lunar Science Institute provided invaluable help particularly Ms. F. Waranius and Ms. G. Stokes who sought out numerous obscure references for me and gave me unlimited access to excellent library facilities and Ms. M. Hagar who helped find many lunar photographs and Ms. C. Watkins who coordinated much of the drafting and photography for me. Without the precise typing and inspired interpretation of the handwritten drafts by Ms. L. Mager of the Lunar Science Institute and Ms. C. Castille of the University of Texas at Galveston, the manuscript may never have been read by anyone but the author. I am grateful to Mr. B. Mounce, NASA, Johnson Space Center and Ms. C. Martin, University of Texas for the drafting of most of the diagrams and Mr. R. Henrichsen and Ms. R. List, University of Texas at Galveston who coordinated the preparation of camera-ready copy prior to publication. The National Space Science Data Center provided some Lunar Orbiter photography.

Finally, I would like to thank Dr. G. Latham, Associate Director of the Marine Science Institute, University of Texas at Galveston for his continued encouragement particularly during difficult times in the final stages of writing and Dr. D. McKay, Dr. F. Hörz and Capt. J. Young who provided helpful advice during preparation of the manuscript.

January 12, 1976

John F. Lindsay
Contents

Preface .. VII

Contents .. IX

Chapter 1: The Moon as a Planet 1
- Introduction 1
- Internal Structure and Chemistry of the Moon 3
 - The Crust 3
 - The Upper Mantle 5
 - The Middle Mantle 7
 - The Lower Mantle 7
 - The Core 8
 - The Moon's Magnetic Field 10
- Origin of the Moon 11
 - Binary Planet Hypothesis 11
 - Capture Hypothesis 11
 - Fission Hypothesis 12
 - Precipitation Hypothesis 14
 - Sediment Ring Hypothesis 15
- References 16

Chapter 2: Energy at the Lunar Surface 19
- Introduction 19
- The Meteoroid Flux 19
- Distribution of Meteoroids in Space 20
- Measuring the Meteoroid Flux 23
- The Mass-Frequency Distribution 26
- Velocity Distribution 30
- Physical Properties 30
 - Density 30
 - Shape 32
 - Chemical Composition 33
 - Micrometeoroid Composition 33
 - Planetesimals 35
Chapter 5: Lithology and Depositional History of Major Lunar Material Units

- **Introduction**
- **Lithology of the Fra Mauro Formation**
 - Megascopic Features of the Fra Mauro Lithology
 - Classification of Fra Mauro Lithologies
 - Composition and Mineralogy of Fra Mauro Breccias
 - The Metamorphic Environment
 - Sedimentary Textures
- **Genesis of the Fra Mauro Formation**
- **Lithology of the Cayley Formation**
 - Classification of the Cayley Formation Lithologies
 - Relationships Among Breccia Types
 - Petrology of Cayley Formation Lithologies
- **Genesis of the Cayley Formation**
- **Impact-Induced Fractionation of Lunar Breccias**

Chapter 6: The Lunar Soil

- **Introduction**
- **Soil Thickness and Accumulation Rates**
- **Soil Stratigraphy and Dynamics**
- **Soil Density**
- **Composition of Lunar Soils**
- **Soil Petrography**
 - Lithic Clasts
 - Mineral Grains in Soils
 - Metallic Particles
 - Glass Particles
 - Homogeneous Glasses
 - Agglutinates
- **Mixing Models and End Members**
- **Texture of the Lunar Soil**
 - Grain Size of Lunar Soils
 - Shape of Soil Particles
- **Textural Evolution of the Lunar Soil**
 - The Comminution Dominated Stage
 - The Agglutination Dominated Stage
 - The Steady State Stage
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soil Maturity</td>
<td>281</td>
</tr>
<tr>
<td>Energy Partitioning and the Flux of Detrital Materials</td>
<td>283</td>
</tr>
<tr>
<td>References</td>
<td>284</td>
</tr>
<tr>
<td>Lunar Glossary</td>
<td>286</td>
</tr>
<tr>
<td>Index</td>
<td>295</td>
</tr>
</tbody>
</table>
A composite view of the lunar nearside. The mare and highlands are clearly differentiated and the major circular basins are visible. (1) Mare Orientale on the edge of the disk. (2) Oceanus Procellarum. (3) Mare Humorum. (4) Mare Nubium. (5) Mare Imbrium. (6) Mare Serenitatis. (7) Mare Tranquillitatis. (8) Mare Nectaris. (9) Mare Fecunditatis. (10) Mare Crisium. (Lick Observatory Photograph).