LUNAR AND PLANETARY SCIENCE CONFERENCE XVIII
16-20 March 1987

The EIGHTEENTH LUNAR AND PLANETARY SCIENCE CONFERENCE will begin Sunday March 15 at 6:00 p.m. with registration and an open house at the Lunar and Planetary Institute. The registration fee for the conference is $35.00. A shuttle bus will run between NASA area hotels and the LPI from 5:45 to 10:00 p.m. Registration will continue throughout the conference on the 2nd floor of the Gilruth Center at the Johnson Space Center. All conference activities, technical sessions, exhibits, poster sessions, etc., unless otherwise listed, will be at the Gilruth Center.

From a total of 584 abstracts accepted for publication in Lunar and Planetary Science XVIII, the Program Committee has constructed 29 technical sessions and one special session. The general structure of the program is as follows:

MONDAY AM, MARCH 16
Venus Tectonic Styles, Surface Structures and Geologic History
Carbonaceous Chondrites: Inclusions and Matrix Impact Phenomena: Terrestrial Observations

MONDAY PM, MARCH 16
Venus Interior, Models and Surface Geochemistry
Carbonaceous Chondrites, Chondrules and the Nebula
Space Utilization
Impact Phenomena: Theory and Experimentation

TUESDAY AM, MARCH 17
Symposium: Lunar Geoscience Observer (LGO) and Future Lunar Exploration
Halley and Comet Exploration
Mars Geology and Geomorphology

TUESDAY PM, MARCH 17
Lunar Mare Basalts and Geology
Nucleosynthesis: Isotope Anomalies
The Outer Solar system

WEDNESDAY AM, MARCH 18
Mars and Other Remote Sensing
Planetary Differentiation and Crustal Genesis
Cosmic Dust

WEDNESDAY PM, MARCH 18
Mars Channels and Volatiles
Eucrites and Associates
Extinct-nuclide Chronology; Primitive Components

WEDNESDAY EVENING, MARCH 18, SPECIAL SESSION
Onset Of Accretion

THURSDAY AM, MARCH 19
SNC Meteorites
The Solar Nebula and Planetary Origins
Lunar and Asteroidal Regoliths

THURSDAY PM, MARCH 19
Lunar Highlands
Asteroids and Comets
Ureilites and Iron Meteorites,
Cosmic Rays

FRIDAY AM, MARCH 20
Planetary Geologic Processes
Ordinary Chondrites
Planetary Physics

The preliminary program included in this issue reflects plans for the conference as they exist early in February. Minor changes may yet occur before the Conference itself. (See Appendix to this Bulletin)

CONFERENCE HIGHLIGHTS

POSTERS entered in the Technical Poster Session will be highlighted each day of the Conference in the Gilruth Center. Approximately 20-30 posters will be displayed each day. Presenters of the day's display will have the opportunity to present and discuss their material during an informal cash bar session from 5-6:30 p.m. each evening.

The LPI Image Processing Facility will conduct an open house throughout the conference in McCgetchin Hall at the LPI. Check the registration desk for times. For additional information contact Mr. Kin Leung at 713-486-2165 or Ms. Sharon Allen at 713-486-2181.

The on-line and remote access capabilities of the LPI Geophysical Data Facility will be demonstrated at the LPI.
Exhibit in the Coffee area, Gilruth Center, during the regular conference hours.

The Combined Publishers Exhibit will be on display in the coffee area of the Gilruth Center from Monday through Friday noon. Several publishers have already indicated an intent to participate. Among them are American Institute of Aeronautics and Astronautics, Astromedia, Cambridge University Press, Columbia University Press, Doubleday, National Space Society, D. Reidel Publishing Co. and University of Arizona Press.

Monday - March 16
Special session sponsored by the Planetary Society will be held Monday evening at 8:00 p.m. in the Johnson Space Center Auditorium, Building 2. The topic of the symposium will be: FUTURE EXPLORATION OF MARS. The participants will be:
Dr. V. Barsukov, Vernadsky Institute for Geochemistry and Analytical Chemistry, U.S.S.R.
Dr. V.E. Mcrocz, Institute for Space Research, U.S.S.R.
Dr. B. Murray, Professor of Planetary Science, California Institute of Technology, former Director of the Jet Propulsion Laboratory, Vice President of the Planetary Society
Dr. H. Masursky, U.S. Geological Survey, Branch of Astrogeology.

Moderator will be Dr. Louis Friedman, Executive Director, The Planetary Society.
This session is open to the public.

Tuesday - March 17
Tuesday morning in the Gilruth Center a Symposium on Lunar Geoscience Observer (LGO) and Future Lunar Exploration will convene as a regular technical session. The program for this session can be found in the Program Appendix included in this issue of LPIB.

A special session, Planetary Exploration in the 1990's and Beyond, will be held in the JSC Building 2 Auditorium at 8 p.m. The prospects for an expanded planetary exploration program in the 1990's are being seriously explored as a response to the recent reports of the Solar System Exploration Committee and the National Commission on Space. This session will examine current NASA thinking with respect to such missions as Mars Sample Return and the potential for eventual human exploration of the Moon and Mars.

Wednesday - March 18
The JSC Astronomer's Brownbag Lunch Club will present Paul Weissman, Jet Propulsion Laboratory in the Conference Room, Room 193, Building 31 at Noon. The topic for discussion will be Comet Showers and Biological Extinctions.

A symposium on Terraforming will be the topic of a meeting to be convened by James Oberg, in the Berkner Room, LPI, at 7:00 p.m. The discussion will concern planet-wide artificial climate modification on Earth and other planets. Long-range prospects for redesigning the planets will be included. The symposium should help the participants take the topic of Terraforming from the realm of science fiction to future technology.

A special session on Onset of Accretion which will focus on processes and phenomena related to the earliest stages in the growth of solids in the protoplanetary nebula, will convene at 8:00 p.m. in Room 104 at the Gilruth Center. Jeff Cuzzi, NASA-Ames, is convener and moderator for this session.

Thursday - March 19
Thursday evening is Tex-Mex Fiesta time. Herding a new tradition, this social event will be held on the grounds of the LPI from 6:30 to 10:00 p.m. Activities will include beer and nacho appetizers, a Tex-Mex fiesta dinner, Country-Western Band in the early evening and a performance by our locally well-known "BAGS" from 9:30 until Paid registrants of the Conference are welcomed at the Fiesta. Tickets for guests and other non-conference registrants will be available at the Registration Desk during the Conference.

ABSTRACTS—
Lunar and Planetary Science XVIII
A staple-bound copy of abstracts will be sent before the conference to the corresponding author of an abstract. A copy is being sent to the foreign corresponding authors also. However, in the case of the foreign authors, if this mailing would result in multiple copies to one institution, only one will be sent. It is suggested that this copy be shared among the author's colleagues.

Abstract volumes will be distributed to conference attendees who have paid the $35.00 registration fee. For those who cannot attend the conference but wish to have the abstracts, a supply will be available after the conference at the cost of postage and handling. Note: New prices are in effect for mail orders on the LPSC abstracts. Please be sure to refer to the order form included in this Bulletin and mail with payment to the LPI ORDER DEPT. at the LPI.

Summaries of the main topics discussed at the Conference will be published in the June issue of Geotimes.

ERRATA: LPSC XVIII INFORMATION
A typo occurred in the conference information brochure which has been mailed to those indicating an interest in LPSC XVIII. The toll free number for Continental Airlines is: 1-800-445-0632. The master file number for the reduced rates is: 2677. We regret any inconvenience which this may have caused conferences attendees in attempting to make airline reservations.

Publication of 18th Proceedings
We are very pleased to announce satisfactory completion of an agreement between LPI and the Cambridge University Press for joint publication of the 18th Proceedings as a
NASA AND TELESCOPE INSTITUTE DEVELOP PLANETARIUM PROJECT

NASA and the Space Telescope Science Institute (Baltimore), recently awarded a grant to the Davis Planetarium, Baltimore, for the development and distribution of First Light, a planetarium program based on the Hubble Space Telescope.

The grant from NASA's Educational Affairs Division and the Space Telescope Science Institute Associates Program, assists with the development of the planetarium program by the staff of the Davis Planetarium, provides the project with technical consultation and makes possible the distribution of the program to all interested planetariums.

The 33-minute program was designed for effectiveness in both school and public planetariums regardless of the extent of their auxiliary projection equipment.

First Light premiered at the Davis Planetarium in November and will continue for 6 months. Program distribution will begin in the late spring of 1987 and will extend beyond the launch of the Hubble Space Telescope, scheduled for November 1988.

Because NASA funding is involved, American planetariums may borrow the program production materials without cost. Planetariums in other countries also can acquire the production kit at a modest cost which will be determined by the Davis Planetarium at a later date. Planetariums wishing to reserve the program production package should write to Dan Zirpoli, Director, Davis Planetarium, 630 Light Street, Baltimore, Maryland 21230 or call 301/685-2370.

NASA Release “Note to Planetarium Directors:”
January 6, 1987

The synthetic aperture radar, the only science instrument on Magellan, is being built by Hughes Aircraft and will acquire radar imagery of Venus' surface. An early test of the radar with the spacecraft is scheduled for this summer, Piotrowski told The AEROSPACE DAILY in a telephone interview. It won't be a flight model, "but it will contain some flight units," he said.

Spacecraft and radar integration should be completed by this fall and will be followed by "a number of tests" through the remainder of 1987 and 1988, Piotrowski said, leading up to the 1989 launch, a one-year delay caused by the Challenger accident.

Apollo 204
January 27, 1967

Challenger
January 28, 1986
The new launch date adds about a year to the spacecraft's travel time to Venus because of the new trajectory (type 4) which requires a trip around the Sun on the way, Piotrowski said. The original trajectory (type 2) is available only every 19 months, and the next window would have been November 1989. That would reduce the travel time to about six months. But that timeframe has been set aside by NASA for either the Ulysses or Galileo mission. Piotrowski said that "since there was another type of trajectory launching at a different time to Venus, when one considers the overall planetary program schedule, it was more advantageous for Magellan to go in April 1989."

COBE TO BE LAUNCHED ON DELTA ROCKET

NASA has announced plans to launch the Cosmic Background Explorer (COBE) satellite on a Delta expendable launch vehicle rather than the Space Shuttle. This decision will further NASA's effort to pare the backlog of science payloads that cannot be accommodated on a timely basis by the Shuttle.

The COBE, designed, integrated and tested at NASA's Goddard Space Flight Center, Greenbelt, Md., will be launched into a 560-statute-mile, sun-synchronous orbit from Vandenberg Air Force Base, Calif., in early 1989.

Carrying three scientific instruments, COBE is designed to study the "Big Bang," the primeval explosion that started the expansion of the universe 15 billion years ago.

Originally scheduled for deployment from the Space Shuttle in July 1988, COBE is one of several science payloads awaiting launch as a result of the Challenger accident and the decision to defer activation of the West Coast Shuttle launch site until the early 1990s.

The switch from Shuttle to Delta will mean a reduction in the weight of COBE from 10,500 pounds to 5,000 pounds and a reduction in size from 15 feet to 8 feet in diameter. Scaling down of the spacecraft will require a redesign of the spacecraft's primary structure, a reconfiguration of its solar arrays, thermal shield and the differential microwave radiometer receiver. The Delta launch vehicle carries the usual complement of nine strap-on solid rocket boosters. However, the boosters on this version of the Delta have a higher thrust rating, allowing it to accommodate the weight of the COBE.

NASA Press Release 87-1, January 5, 1987

AROUND-THE-WORLD IN 15 DAYS: NASA BALLOON FLIGHTS

Officials at NASA's Goddard Space Flight Center, Greenbelt, Md., have announced plans to launch two large, unmanned balloons on around-the-world flights. The flights are expected to be launched during January and February from a site in Alice Springs, Australia.

According to Harvey Needleman, chief, Balloon Projects Branch, Goddard-Wallops Flight Facility, Wallops Island, Va., "The southern hemisphere is about the only place that we can conduct long duration flights of this type."

"To circumnavigate the globe, the balloons require strong, persistent winds to maintain proper latitude with minimum deviation. We expect that the flights will experience winds between 50 and 75 knots enabling the balloons to circle the Earth in 12 to 18 days," he continued.

The balloons will go around the Earth at about 23 degrees south latitude varying probably no more than 5 degrees from that course. Countries along the 23rd parallel south include New Zealand, Chile, Peru, Argentina, Bolivia, Paraguay, Botswana, Zambia, South Africa, Zimbabwe, Mozambique and Madagascar.

If favorable weather prevails, the first balloon could be launched as early as January 19. The second balloon will be released no less than 3-4 days later to minimize any potential operational interference between the two flights. In case of a weather delay, the launches could be accomplished anytime within the month of February.

The helium-filled, 28 million-cubic-feet volume balloons are taller than the Washington Monument and will carry payloads, weighing 3,000 pounds, to an altitude of 130,000 feet. These are the first balloons manufactured from a newly-developed material, called "Astrofilm," to be used in a global application.

Satellites play important roles in the success of both flights. Two U.S. polar-orbiting satellites, carrying French ARGOS instruments, will track the balloon flights. Four meteorological satellites, orbiting over the equator at different longitudes, will be used to relay to the ground the data acquired. Two of the satellites are U.S.-operated GOES satellites, the others belong to the European Space Agency and Japan.

The flights are being conducted by NASA for the University of California (U. of Calif.), Berkeley and San Diego branches, and carry a joint experiment by Louisiana State University (LSU) and the University of Washington.

Dr. Robert Lin is principal investigator for the U. of Calif experiment studying microflares and solar flares. Microflares have been discovered to occur more frequently than the classic solar flare. The energy produced by these microflares is now believed to be significant and may explain some phenomenon like the heating of the sun's corona. Results of these studies may be very useful to an understanding of the micro-scale structure of the sun and other similar stars.

The principal investigator for the experiment flying on the second balloon is Dr. John Wefel of LSU. His experiment will utilize an emulsion chamber that will be exposed to the primary cosmic rays to study nuclear interactions and cosmic ray composition.
In addition to the scientific experiments, each balloon will carry electronic instrumentation developed to meet the special requirements of long duration flight. The electronic system will be powered by batteries with daily recharging provided by arrays of solar cells.

When each balloon nears the end of its around-the-world flight, technicians in Australia will terminate the flight by radio signal to effect land recovery in a safe location during daylight hours. When transmitted, the signal will fire a charge that releases the payload from the balloon, allowing the payload to descend by parachute. Once recovered, the payloads will be prepared for shipment back to the U.S. where they will be refurbished for future flights.

NEW PUBLICATIONS

Some of the following publications are available from the Superintendent of Documents, Government Printing Office, Washington DC 20402. Although this agency requires prepayment on all orders, they will accept Mastercard or VISA credit cards. Just include the account number and expiration date on your order to them. Some of the publications may be available from the GPO bookstores which are found in major cities around the U.S. Check your city directory for a local listing.

Several of the GPO publications are being offered by other distributors at widely varying prices. It pays to shop and compare.

Please do not send orders for these publications to the LPI (unless listed as an LPI publication). We are not a distribution center and this will only delay your order. If you are interested in obtaining any of the items in the New Publications List do contact the publisher or supplier listed with each item. Inclusion of publications and other products in this Bulletin is not to be considered an endorsement by the LPI.

LPI OFFERS NEW SLIDE SET
Apollo Landing Sites

This set of 40 slides provides photographic coverage of the regional setting for the six Apollo landing sites. It has been compiled by Dr. James Zimbelman, staff scientist at the LPI. Dr. Zimbelman has selected a series of photographs for each of the sites. The photos show the sites at a variety of scales ranging from Earth-based telescopic views spanning hundreds of kilometers of the lunar surface to high-resolution photographs taken from lunar orbit. Descriptive text giving geological details for each area is included in the booklet which accompanies the slide set.

The slide set should be useful for both educators and researchers who wish to show the regional setting of samples and photographs returned by the Apollo missions.

This pre-publication announcement offers the 40-slide set and booklet for $15.00 to U.S. requestors, $20.00 for foreign orders. The set will be available in mid-March 1987. Orders may be placed using the LPI Order Form included in this Bulletin.

AGU ANNOUNCES AVAILABILITY OF PROCEEDINGS OF THE 17TH LPSC

Pricing of the Proceedings varies. Members of AGU may obtain Parts 1 and 2 for $20.00 softbound; and $35.00 hardbound. Members of the Meteoritical Society, Geochemical Society, and the Division for Planetary Sciences of the American Astronomical Society receive a special price of $23.00 softbound; $38.00 hardbound. For institutions and other individuals the list price is $70.00 softbound, $100.00 hardbound.

Orders or other inquiries should be directed to:
American Geophysical Union
2000 Florida Avenue NW
Washington DC 20009
Phone: 1-800-424-2488 toll-free
202-462-6903 (in D.C. area or outside contiguous U.S.)

TERSCH ENTERPRISES OFFERS SLIDE SETS

Two slide sets on Halley's Comet are being offered by this firm. The first is entitled Halley's Comet (1986) Pre-Perihelion. Slide set 210 (18 color slides shipped postpaid for $15.00). This set shows closeup and wide angle photos of the comet as seen from Tiara Observatory in South Park,
Colorado. The second set is entitled *Halley's Comet (1986 Post-Perihelion)*, Slide Set 213 (44 color slides shipped postpaid for $32.50). This set goes from March through May and shows wide angle and closeup views of the comet. Included in this set are 15 views taken from Moorea, French Polynesia. All slides are done by professionals and special attention was given to the proper color balance for each slide.

The company offers a catalog to educators and scientists free of charge. The catalog contains over 4100 selections of astronomical slides. Institutional purchase orders are accepted. Contact:

Tersch Enterprises
P.O. Box 1059
Colorado Springs CO 80901
Phone: 303-597-3603

ASTRONOMICAL SOCIETY OF THE PACIFIC - NEW RELEASES

Voyager Uranus Slide Set

A new slide set showing 15 of the best images obtained during the Voyager spacecraft flyby of the planet Uranus has just been released. The set includes color and black-and-white views of the rotation of the Uranus cloud layers, the complex ring system, and the major satellites, as well as several close-ups of the bizarre terrain found on the satellite Miranda. The dramatic images were selected to display the richness and variety of astronomy and geology revealed by the historic first mission to the seventh planet.

The set is accompanied by a 20-page booklet giving a thorough introduction to the Voyager mission and the Uranus system, detailed nontechnical explanations of each slide, and a reading list of articles and books about our new understanding of Uranus. The set is available for $14.95 (including postage and handling).

Astronomical Software List

An annotated list of astronomical software for home computers includes 89 different commercially available programs for such popular microcomputers as Apple, Macintosh, IBM, Commodore, Atari, TRS-80, and Hewlett-Packard. The software ranges from simple calculational programs to elaborate home planetarium and space travel simulations.

This list prepared by A.S.P. includes a brief description of each piece of software, the computers for which it is available, the retail price, and the full address of the manufacturer. Also included are brief reviews of 13 introductory books and articles on astronomical computing.

To obtain a copy of the 8-page guide send $2.00 with your name and address to A.S.P.

Clyde Tombaugh Videotape

A 39-minute videotape in which Clyde Tombaugh explains the work that led to his finding the planet Pluto in 1930 has been released by A.S.P. The tape shows a rare glimpse "behind-the-scenes" of a major astronomical discovery.

In 1985, Tombaugh, then age 79, returned to the Lowell Observatory where his discovery was made. The taping was done at Lowell and later at his home in New Mexico. Talking in an unassuming, nontechnical style and surrounded by the telescope and other equipment he used, Tombaugh tells the human and scientific story of the Kansas farmboy who came to Lowell as an amateur astronomer and stayed to make one of the epochal discoveries of 20th century astronomy.

The tape, made by Thomas Hickey of New Mexico State University, assumes little or no background in astronomy and can be enjoyed at home or in a classroom. It is available only in VHS format, comes in a protective box, and is accompanied by a twelve-page booklet written by Tombaugh. It is available for $32.95 (includes postage and handling).

To obtain any of the materials from the A.S.P., send check, money order to:

Astronomical Society of the Pacific
1290 24th Avenue
San Francisco CA 94122
Phone: 415-661-8660

Because A.S.P. is a non-profit organization, they ask that foreign orders be accompanied by an additional 30% to cover postage and that remittance be in U.S. funds. California residents please add correct sales tax.

GPO OFFERS TEACHER'S KIT ON NUCLEAR ENERGY

The Department of Energy has released a new two-part teacher's kit on nuclear energy, *The Harnessed Atom* is a comprehensive middle school teacher's kit that provides students and teachers with unbiased, and up-to-date materials about nuclear energy. The text reviews the basic scientific principles that underlie nuclear energy and focuses on atoms, radiation, the technology of a nuclear powerplant, and the issues concerning nuclear energy. The kit contains written text and filmstrip, review exercises and activities for students in grades 6 through 8. The Teacher's Guide contains suggestions for using the materials, including ideas for a learning center. This kit also includes discussion questions, answers to review exercises and activities, a list of materials, and a list of additional resources. The student guide consists of four units, 18 separate reading lessons including summary and review exercises.
NEW EDITION OF REMOTE SENSING BOOK PUBLISHED
Remote Sensing: Principles and Interpretation

Floyd Sabins' book on remote sensing has been a standard source book on the subject since it was first published in 1978. Much has happened in the field since then, and many new sensors have been brought into use, such as the Landsat Thematic Mapper, the French SPOT system; SEASAT and Shuttle imaging radars, and a variety of experimental multi-channel, narrow-band systems working in the infra-red. Clearly, then, there was a need for a new edition of the book, which Sabins has now provided.

Physically, the new book is closely similar to its predecessor with the same size and format. It is slightly longer, at 449 pages compared to 425 in the original. All of the original chapter headings have been retained, in the same order, and naturally much of the fundamental material remains unchanged—the section on aerial photography, for example, has only been lightly revised. The later chapters have all been extensively revised and brought up to date. For example, in the chapter on radar images, there is an excellent new chapter on SIR-A data, but little on SIR-B. There is one completely new chapter, on land use and land cover analysis, and a new appendix on “Basic geology for remote sensing.” This seems rather a superficial, almost frivolous addition. How much serious geology can one convey in a mere four pages, half of them devoted to figures? This minor reservation apart, the new edition of Sabins' book represents a timely revision of what was already an invaluable source book and teaching aid, and it will undoubtedly be valued by students of remote sensing for many years to come.

NOTE TO OUR READERS:

PLEASE let us know when you move. Each change of address which we get through the postal service costs us $0.30-$0.80 in return postage costs. Because of the high costs of postage, we will make the address change on our list but we will no longer mail another copy of the LPIB issue or whatever was contained in the envelope that we get back. Since the same mailing list is used for conference announcements and other LPI mailings you will miss whatever is mailed from the LPI in the interval that we do not have your address change.

If you want to be sure that you get all of your mailings from the Institute promptly, be sure to send a change of address to: Mailist, Lunar & Planetary Institute, 3303 NASA Road One, Houston, TX 77058-4399. It often takes the postal service 60-90 days to return an item to us with the address correction. We also often receive a notice on the returned envelope that the “forwarding order is expired.” Under that circumstance, we have no alternative than to delete the name from the mailing list. Do yourself and us a service. Remember the LPI Mailing List when you move. Thanks.

ye editor
The LUNAR AND PLANETARY INFORMATION BULLETIN is published by the Lunar and Planetary Institute. There are usually three issues per year. It is distributed free on request to lunar and planetary scientists, educators, students, and their institutions.

The next issue will be in MAY. Copy deadline is APRIL 17, 1987. If you have any announcements which you would like to have printed in the BULLETIN, please send them to the Editor.

We reserve the right to select and edit copy.

Editor: Frances B. Waranus
Lunar and Planetary Institute
3303 NASA Road One
Houston, TX 77058-4399
Phone: 713/486-2135

<table>
<thead>
<tr>
<th>CALENDAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1987</td>
</tr>
</tbody>
</table>

March 10-14

Sushil K. Atreya
University of Michigan
Space Research Building
Ann Arbor MI 48109-2143

March 16-20

XVIIIth Lunar and Planetary Science Conference
Houston, Texas.

March 27-29

L-5 Society's 6th Space Development Conference
Pittsburgh, Pennsylvania.
Pittsburgh L-5 Society
P.O. Box 8391
Pittsburgh PA 15218-0391
Phone: 412-351-4973

April 10-15

European Geophysical Society, XII General Assembly, Strasbourg, France.
M.M. Cara
Institut de Physique du Globe
5 rue R. Descartes
F-67084 Strasbourg CEDEX France
Phone: +33-88-604110

April 13-16

1987 European Union of Geosciences Biennial Meeting, Strasbourg
Organizing Committee EUG IV
Dept. of Earth Sciences ETH-Honggerberg
CH-8093 Zurich, Switzerland

May 5-7

Pecora XI Symposium
EROS Data Center
Sioux Falls, SD 57198
<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
<th>Location</th>
<th>Organizer/Contact Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>May 6-9</td>
<td>8th Biennial SSI/Princeton Conference on Space Manufacturing</td>
<td>Princeton, New Jersey</td>
<td>Space Studies Institute Ms. Barbara Faughnan, Conference Coordinator P.O. Box 82 Princeton NJ 08540</td>
</tr>
<tr>
<td>May 10-15</td>
<td>Impact of VLBI on Astrophysics and Geophysics</td>
<td>Cambridge, Massachusetts</td>
<td>J. Moran Center for Astrophysics Mail Stop 42 60 Garden Street Cambridge MA 02138</td>
</tr>
<tr>
<td>May 18-22</td>
<td>American Geophysical Union Spring Meeting</td>
<td>Baltimore, Maryland</td>
<td>American Geophysical Union Spring Meeting 2000 Florida Avenue NW Washington DC 20009 Phone: 202-462-6903</td>
</tr>
<tr>
<td>June 7-9</td>
<td>1986 Houston Space and Telecomm Symposium</td>
<td>Houston, Texas</td>
<td>Space and Telecomm, Inc. P.O. Box 230192 Houston TX 77223 Phone: 713-225-1950</td>
</tr>
<tr>
<td>June 8-10</td>
<td>Twelfth Symposium on Antarctic Meteorites</td>
<td>National Institute of Polar Research, Tokyo, Japan</td>
<td>Tatsuro Matsuda, Director-General National Institute of Polar Research 9-10 Kaga 1-Chome, Itabashi-Ku Tokyo 173 Japan Phone: (03)962-4711 - 4716</td>
</tr>
<tr>
<td>June 14-18</td>
<td>170th Meeting of the American Astronomical Society</td>
<td>Vancouver, British Columbia</td>
<td>Harvey Richer Dept. of Geophysics and Astronomy University of British Columbia Vancouver BC V6T 1W5 Canada Phone: 604-228-4134</td>
</tr>
<tr>
<td>June 16-18</td>
<td>Uranus Conference</td>
<td>Pasadena, California</td>
<td>Jay T. Bergstralh, Organizer Mail Stop 183-301 Jet Propulsion Laboratory 4800 Oak Grove Drive Pasadena CA 91109 Phone: 818-354-2296</td>
</tr>
<tr>
<td>June 20-24</td>
<td>Contribution of Amateur Astronomers to Astronomy</td>
<td>Paris, France</td>
<td>P. Simon Societe Astronomique de France 3, Rue Beethoven 75016 Paris, France Phone: 224.13.74</td>
</tr>
<tr>
<td>July 6-10</td>
<td>International Workshop Cryptoexplosions and Catastrophes in the Geological Record</td>
<td>Parys, South Africa</td>
<td>Organising Committee Cryptoexplosions Workshop Bernard Price Institute of Geophysical Research University of the Witwatersrand 1 Jan Smuts Avenue Johannesburg 2001 South Africa</td>
</tr>
<tr>
<td>Date</td>
<td>Event</td>
<td>Venue</td>
<td>Organizer/Contact Information</td>
</tr>
<tr>
<td>------------</td>
<td>---</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>July 6-11</td>
<td>Continental and Oceanic Lithosphere: Similarities and Differences</td>
<td>University of London, Royal Holloway and Bedford New College, England</td>
<td>Steve Bergman, Arco Exploration and Technology Copr., 2300 West Plano Pkwy, Plano TX 75075, Phone: 214-422-6264</td>
</tr>
<tr>
<td>July 13-17</td>
<td>Workshop on the Growth of Continental Crust</td>
<td>Oxford University, England</td>
<td>Pam Jones, Lunar and Planetary Institute, 3303 NASA Road One, Houston TX 77058-4399, Phone: 713-486-2150</td>
</tr>
<tr>
<td>July 16-24</td>
<td>SPACEWEEK</td>
<td></td>
<td>Spaceweek National Headquarters, P.O. Box 58172, Houston TX 77258, Phone: Lisa Ehrler 713-332-4968 or Roger Grape 713-271-5000</td>
</tr>
<tr>
<td>July 18-22</td>
<td>Case for Mars III: Strategies for Exploration</td>
<td>Boulder, Colorado.</td>
<td>Case for Mars III, P.O. Box 4877, Boulder CO 80306, Phone: 303-494-8144</td>
</tr>
<tr>
<td>July 20-24</td>
<td>50th Annual Meeting of the Meteoritical Society</td>
<td>Newcastle upon Tyne, England.</td>
<td>Dr. D.W. Collinson, School of Physics, The University, Newcastle upon Tyne NE1 7RU England, Phone: 091-232-8511</td>
</tr>
<tr>
<td>August 9-22</td>
<td>Interdisciplinary Symposium 10 - Comparative Planetology - Sputnik Commemorative Symposium</td>
<td>Vancouver, British Columbia, Canada.</td>
<td>Dr. James W. Head III, Department of Geological Sciences, Brown University, Box 1846, Providence RI 02912, Phone: 401-863-2526</td>
</tr>
<tr>
<td>Date</td>
<td>Event</td>
<td>Location</td>
<td>Contact</td>
</tr>
<tr>
<td>------------</td>
<td>---</td>
<td>---</td>
<td>--</td>
</tr>
</tbody>
</table>
| August 17-21 | 7th International Conference on Basement Tectonics | Queen's University, Kingston, Ontario, Canada | 7th International Conference on Basement Tectonics
c/o Events Management Inc.
4 Cataraqui Street, Suite 209
Kingston Ontario Canada K7K 1Z7
Phone: 613-547-5093 |
| August 25-27 | International Workshop on Time-Variable Phenomena in the Jovian System | Flagstaff, Arizona | William A. Baum
Lowell Observatory
Mars Hill Road
Flagstaff AZ 86001
Phone: 602-774-3358 |
| September 6-11 | 15th Annual Meeting on Atmospheric Studies by Optical Methods (AMASOM) | Granada, Spain | Dr. J.J. Lopez-Moreno
Instituto de Astrofisica de Andalucia
P.O. Box 2144
18080 Granada Spain
Phone: 121300 |
| September 10-27 | Evolution of Metamorphic Belts, Department of Geology | University College, Dublin, Ireland | J.S. Daly
Department of Geology
University College, Dublin
Belfield, Dublin 4, Ireland |
| September 14-16 | Origin of Granites, Edinburgh, Scotland | | Meetings Secretary
Royal Society of Edinburgh
22-24 George Street
Edinburgh, Scotland EH2 2PQ |
THE MOON

DULGINOV, SH. SH. (PHYSIKALISCHES INSTITUT, UNIV. OF BERN, 3012 BERN, SWITZERLAND): PALEOMAGNETISM OF THE MOON AND THE PROBLEM OF PLANETARY DYNAMO FIELDS

ASTRONOMY VOL. 24, 112-120 (1986)

EUWSTER, O. + WIEDERMANN, S. (PHYSIKALISCHES INSTITUT, UNIV. OF BERN, 3012 BERN, SWITZERLAND): SINGLE-STAGE EXPOSURE HISTORY OF LUNAR HIGHLAND BRECCIAS 60018, 67435, AND 6745

NO AUTHOR CITED. WAS THE MOON FORMED BY A GIANT COLLISION?

ASTRONOMY VOL. 14(7) 68-69 (1986)

PIETERS, C.M. (DEPT. OF GEOLOGICAL SCIENCES, BROWN UNIV., PROVIDENCE, RI 02912): COMPOSITION OF THE LUNAR HIGHLAND CRUST FROM NEAR-INFRARED SPECTROSCOPY

REVIEWS OF GEOPHYSICS VOL. 24, 557-578 (1986)

RAVINE, M.A. + GRIEVE, R.A.F. (JET PROPULSION LAB., CALIFORNIA INST. OF TECH., PASADENA, CA 91109): AN ANALYSIS OF MORPHOLOGIC VARIATION IN SIMPLE LUNAR CRATERS

ROITON, J. + KELLY, I.W. (THE LUNACY OF IT ALL: LUNAR PHASES AND HUMAN BEHAVIOR

MERCURY VOL. 15, 73-75, 95 (1986)

PROCEEDINGS OF THE SEVENTEENTH LUNAR AND PLANETARY SCIENCE CONFERENCE, PART I, JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 91, NO. B13, PAGES E64-E74, NOVEMBER (1986)

SMYTH, J.R. (DEPT. OF GEOLOGICAL SCIENCES, UNIV. OF COLORADO, BOULDER, CO 80309): CRUSTAL STRUCTURE REFINEMENT OF A LUNAR ANOMALY

WIENER, R. + BAUR, H. + SIGNER, P. (ETH-ZURICH, INSTITUT FUR KRISTALLOGRAPHIE UND PETROGRAPHIE, NO C 61 CH-8092, ZURICH, SWITZERLAND): NOBLE GASES FROM SOLAR ENERGETIC PARTICLES REVEALED BY CLOSED SYSTEM STEPHEN ETCHING OF LUNAR SOIL MINERALS

THE PLANETS (Articles about more than one body)

ALLISON, M. + TRAVIS, L.D. (NASA GORDON INST. FOR SPACE STUDIES, 2880 BROADWAY, NEW YORK, NY 11205): THE JOVIAN ATMOSPHERES

BODENHEIMER, P. + POLLACK, J.B. (LICK OBSERVATORY, UNIV. OF CALIFORNIA AT SANTA CRUZ, SANTA CRUZ, CA 95064): CALCULATIONS OF THE ACCESSION AND EVOLUTION OF GIANT PLANETS: THE EFFECTS OF SOLID CORES

ICARUS VOL. 67, 391-408 (1986)

ICARUS VOL. 67, 305-324 (1986)

CORDER, B.M. (MARS, EARTH, AND ICE SKY AND TELESCOPE VOL. 72, 17-22 (1986)

SOLAR SYSTEM RESEARCH VOL. 20, 1-8 (1986)
PLANETS (Continued)

GRIEVE, R.A.F. (GEOLOGICAL SURVEY OF CANADA, 1 OBSERVATORY CRESCENT, OTTAWA, ONTARIO, CANADA K1A 0J2); 17TH LUNAR AND PLANETARY SCIENCE CONFERENCE EPISODES VOL. 9, 116-117 (1986)

KRIGEL, A.M. (Leningrad Hydro-Meteorological Inst., Malo-Oktentsky Pr. 98, Leningrad, USSR); SEMIANNUAL OSCILLATIONS IN PLANETARY ATMOSPHERES SOVIET ASTRONOMY VOL. 30, 101-103 (1986)

LEE, S.W. + THOMAS, P. + VERVENKA, J. (DEPT. OF GEOLOGY, ARIZONA STATE Univ., TEMPE, AZ 85287); PHOBOS, DEIMOS, AND THE MOON: SIZE AND DISTRIBUTION OF CRATER EJECTA BLOCKS ICARUS VOL. 68, 77-86 (1986)

MATSUMI, T. + ABE, Y. (GEOPHYSICAL INST., Univ. OF TOKYO, BUNKYO-KU, TOKYO 113, JAPAN); IMPACT-INDUCED ATMOSPHERES AND OCEANS ON EARTH AND VENUS NATURE VOL. 322, 526-528 (1986)

NAKAGAWA, Y. + SEKIYA, M. + MAYASHI, C. (GEOPHYSICAL INST., FACULTY OF SCIENCE, Univ. OF TOKYO, TOKYO 113, JAPAN); SETTLING AND GROWTH OF DUST PARTICLES IN A LAMINAR PHASE OF A LOW-MASS SOLAR NEBULA ICARUS VOL. 67, 852-859 (1986)

STEVENSON, D.J. + LUNINE, J.I. (DIV. OF GEOLOGICAL AND PLANETARY SCIENCES, CALIFORNIA INST. OF TECH., PASADENA, CA 91125); MOBILIZATION OF CRYOGENIC ICE IN OUTER SOLAR SYSTEM SATELLITES NATURE VOL. 323, 46-48 (1986)

VICKERY, A.M. (LUNAR AND PLANETARY LAB., UNIV. OF ARIZONA, TUCSON, AZ 85721); SIZE-VELOCITY DISTRIBUTION OF LARGE EJECTA FRAGMENTS ICARUS VOL. 67, 274-236 (1986)

WALKER, J.C.G. (SPACE PHYSICS RESEARCH LAB., UNIV. OF MICHIGAN, ANN ARBOR, MI 48109); IMPACT EROSION OF PLANETARY ATMOSPHERES ICARUS VOL. 68, 87-98 (1986)

WOOD, P.R. + FAULKNER, D.J. (MOUNT Stromlo AND SIDING SPRING OBSERVATORIES, AUSTRALIAN NATIONAL UNIVERSITY); HYDROSTATIC EVOLUTIONARY SEQUENCES FOR THE NUCLEI OF PLANETARY NEBULAE. JOURNAL OF GEOPHYSICAL RESEARCH VOL. 107, 659-674 (1986)

JUPITER

BARRON, C.H. + DESCH, M.D. + GENOVA, F. (DASOP, OBSERVATOIRE DE PARIS, SECTION DE MEUDON, F-92195 MEUDON PRINCIPAL CEDEX, FRANCE); SOLAR WIND CONTROL OF JUPITER'S DECAMETER RADIO EMISSION ASTRONOMY AND ASTROPHYSICS VOL. 165, 244-250 (1986)

BORGUK, W.J. + WILLIAMS, M.A. (NASA AMES RESEARCH CENTER, MOFFETT FIELD, CA 94035); LIGHTNING IN THE JOVIAN WATER CLOUD JOURNAL OF GEOPHYSICAL RESEARCH VOL. 91, 9893-9903 (1986)

CONRATH, B.J. + GIERASCH, P.J. (LAB. FOR EXTRATERRESTRIAL PHYSICS, GODDARD SPACE FLIGHT CENTER, GREENBELT, MD 20874); RETRIEVAL OF AMMONIA ABUNDANCES AND CLOUD OCAPITIES ON JUPITER FROM VOYAGER IRIS SPECTRA ICARUS VOL. 67, 444-455 (1986)

DE PATER, I. (ASTRONOMY DEPT., CAMPBELL HALL 601, UNIV. OF CALIFORNIA, BERKELEY, CA 94720); JUPITER'S ZONE-BELT STRUCTURE AT RADIO WAVELENGTHS. II. COMPARISON OF OBSERVATIONS WITH MODEL ATMOSPHERE CALCULATIONS ICARUS VOL. 68, 344-365 (1986)
JUPITER

DE PATER, I. + DICKEL, J.R. (ASTRONOMY DEPT., UNIV. OF CALIFORNIA, BERKELEY, CA 94720); JUPITER'S ZONE-BELT STRUCTURE AT RADIO WAVELENGTHS. I. OBSERVATIONS THE ASTROPHYSICAL JOURNAL VOL. 308, 459-471 (1986)

PALCA, J. PLANETARY TOUR FOR GALILEO NATURE VOL. 323, 197 (1986)

RYABOV, B.P. (INST. OF RADIOPHYSICS AND SPACE RESEARCH, CORNELL UNIVERSITY, ITHACA, NEW YORK 14853); ZONAL MEAN PROPERTIES OF JUPITER'S TROPOSPHERE FROM VOYAGER INFRARED OBSERVATIONS ICARUS VOL. 67, 456-483 (1986)

SATELLITES OF JUPITER

CROWN, D.A. + GREELEY, R. (DEPT. OF GEOLOGY, ARIZONA STATE UNIV., TEMPE, AZ 85287); SULPHUR AND VOLCANISM ON IO NATURE VOL. 322, 593-594 (1986)

GOLOMBEK, M.P. + BANERDT, W.B. (JET PROPULSION LAB., CALIFORNIA INST. OF TECH., MS 183-501, 4800 OAK GROVE DR. PASadena, CA 91109); EARLY THERMAL PROFILES AND LITHOSPHERIC STRENGTH OF GANYMEDE FROM EXTENSIONAL TECTONIC FEATURES ICARUS VOL. 68, 252-265 (1986)

MCKIBBEN, R.B. + CONNEN L, J.E.P. (ENRICO FERMI INST., UNIV. OF CHICAGO, 5630 S. ELLIS AVE., CHICAGO, IL 60637); PIONEER 11 OBSERVATIONS OF EFFECTS OF GANYMEDE AND CALLISTO ON JUPITER'S TRAPPED RADIATION JOURNAL OF GEOPHYSICAL RESEARCH VOLUM. 91, 10, 975-10,988 (1986)

SUMMERS, D. + SISCOE, G.L. (DEPT. OF ATMOSPHERIC SCIENCES, UNIV. OF CALIFORNIA, LOS ANGELES, CA 90024); A MODEL OF THE 10 PLASMA RIBBON ICARUS VOL. 67, 520-524 (1986)

MARS

CARR, M.H. (U.S. GEOLOGICAL SURVEY, MS-946, 345 MIDDLEFIELD ROAD, MENLO PARK, CA 94025); MARS: A WATER-RICH PLANET ICARUS VOL. 68, 187-216 (1986)

CATTEDRONE, P. (DEPT. OF GEOLOGY, SHEFFIELD, UNIV. BEAUMONT BUILDING, BROOK HILL, SHEFFIELD, S3 7HF, ENGLAND); LINEAR VOLCANIC FEATURES AT ALBA PATERA, MARS - PROBABLE SPATTER RIDGES PROCEEDINGS OF THE SEVENTEENTH LUNAR AND PLANETARY SCIENCE CONFERENCE, PART 1, JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 91, NO. B13, PAGES E159-E165, NOVEMBER (1986)

CHRISTENSEN, P.R. (DEPT. OF GEOLOGY, ARIZONA STATE UNIV., TEMPE, AZ 85287); THE SPATIAL DISTRIBUTION OF ROCKS ON MARS ICARUS VOL. 68, 217-238 (1986)

KERR, R.A. MARS IS GETTING WETTER AND WETTER SCIENCE VOL. 233, 939 (1986)

KOCHEL, R.G. + PILES, H.J. (DEPT. OF GEOL OGY, SOUTH MICHIGAN, UNIV. CARRADON, IL 62901); MORA LITY OF LARGE VALLEYS ON HAWAII: EVIDENCE FOR GROUNDWATER SAPPING AND COMPARISONS WITH MARTIAN VALLEYS PROCEEDINGS OF THE SEVENTEENTH LUNAR AND PLANETARY SCIENCE CONFERENCE, PART 1, JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 91, NO. B13, PAGES E175-E192, NOVEMBER (1986)

MARS (Continued)

NO AUTHOR CITED. VIKING REMEMBERED
SKY AND TELESCOPE VOL. 72, 14-16 (1986)

NO AUTHOR CITED. ANTARCTICA HINTS AT WHY THERE
MAY BE FOSSILS ON MARS
NEW SCIENTIST VOL. 111(1524) 20 (1986)

TANAKA,K.L. (U.S. GEOLOGICAL SURVEY, 2255 N.
GEMINI DRIVE, FLAGSTAFF, AZ 86001) : THE
STRATIGRAPHY OF MARS
PROCEEDINGS OF THE SEVENTEENTH LUNAR AND
PLANETARY SCIENCE CONFERENCE, PART 1, JOURNAL
OF GEOPHYSICAL RESEARCH, VOL. 91, NO. B13,
PAGES E139-E158, NOVEMBER (1986)

THEILIG,E. ARIZONA
FLOWS ON
FEATURES
ANALOGS
+ GREELEY,R. (DEPT. OF GEOLOGY,
STATE UNIV., TEMPE, AZ 85287) : LAVA
MARS: ANALYSIS OF SMALL SURFACE
AND COMPARISONS WITH TERRESTRIAL
PROCEEDINGS OF THE SEVENTEENTH LUNAR AND
PLANETARY SCIENCE CONFERENCE, PART 1, JOURNAL
OF GEOPHYSICAL RESEARCH, VOL. 91, NO. B13,
PAGES E193-E206 NOVEMBER (1986)

ZIMBELMAN,J.R. (DEPT. OF GEOLOGY, ARIZONA
STATE UNIV., TEMPE, AZ 85287) : THE ROLE
OF POROSITY IN THERMAL INERTIA VARIATIONS ON
BASALTIC LAVAS
ICARUS VOL. 68, 366-369 (1986)

MERCURY
POTTER,A.E. + MORGAN,T.H. (NASA JOHNSON SPACE
CENTER, HOUSTON, TX 77058) : POTASSIUM IN THE
ATMOSPHERE OF MERCURY

NEPTUNE
CURTIS,S.A. + NESS,N.F. (LAB. FOR EXTRATERRESTRIAL
PHYSICS, NASA GODDARD SPACE FLIGHT CENTER,
GREENBELT, MD 20771) : THE CENTRIFUGAL FLUTE INSTABILITY
AND THE GENERATION OF SATURNIAN KILOMETRIC
RADIATION
JOURNAL OF GEOPHYSICAL RESEARCH VOL. 91,
10,989-10,994 (1986)

EBEHRMANN,J. SATURN'S 'RING RAIN'
SCIENCE NEWS VOL. 130, 84 (1986)

ESPOSITO,L.W. (LAB. FOR ATMOSPHERIC AND SPACE
PHYSICS, UNIV. OF COLORADO, BOULDER, CO
80309-0392) : STRUCTURE AND EVOLUTION OF
SATURN'S RINGS
ICARUS VOL. 67, 345-357 (1986)

GODFREY,D.A. + MOORE,V. (ATMOSPHERIC PHYSICS
DEPT., BLACKett LAB., IMPERIAL COLLEGE, LONDON
SW7 2BZ, UK) : THE SATURNIAN RIBBON
FEATURE--A BAROCINETICALLY UNSTABLE MODEL
ICARUS VOL. 68, 313-343 (1986)

GRAPS,A.L. + LANE,A.L. (LAB. FOR ATMOSPHERIC
AND SPACE PHYSICS, UNIV. OF COLORADO,
BOULDER, CO 80309) : VOYAGER 2
PHOTOPOLARIMETER EXPERIMENT: EVIDENCE FOR
TENUOUS OUTER RING MATERIA AT SATURN
ICARUS VOL. 67, 205-210 (1986)

HAAS,M.R. + ERICKSON,E.F. + GOORVITCH,D. +
MCKIBBIN,D.D. + RANK,D.M. ERRATA
OBSERVATIONS OF THE J=10 MANIFOLD OF THE PURE
ROTATIONAL BAND OF PHOSPHINE ON SATURN
ICARUS VOL. 67, 342 (1986)

HECHT,J. DOUBTS CAST ON THE AGE OF SATURN'S
RINGS
NEW SCIENTIST VOL. 111(1515) 29 (1986)

LISSAUER,J.L. + PEALE,S.S. (DEPT. OF
PHYSICS, UNIV. OF CALIFORNIA, SANTA BARBARA,
CA 93106) : THE PRODUCTION OF "BRAIDS" IN
SATURN'S F RING
ICARUS VOL. 67, 358-374 (1986)

MARRIOTT,R.A. DAHES, LASSELL AND SATURN'S DUSKY
RING
JOURNAL OF THE BRITISH ASTRONOMICAL
ASSOCIATION VOL. 96, 270-277 (1986)
SATELLITES OF SATURN

SYNNOTT,S.P. (JET PROPULSION LAB., CALIFORNIA INST. OF TECH., PASADENA, CA 91109) : EVIDENCE FOR THE EXISTENCE OF ADDITIONAL SMALL SATELLITES OF SATURN ICARUS VOL. 67, 189-204 (1986)

URANUS

BAGENAL,F. (BLACKETT LAB., IMPERIAL COLLEGE, LONDON SW7 2AZ, UK) : THE DOUBLE TILT OF URANUS NATURE VOL. 321, 809-810 (1986)

BEATTY,J.K. VOYAGER 2'S TRIUMPH SKY AND TELESCOPE VOL. 72, 336-342 (1986)

EBERHART,J. LOOKING BACK AT URANUS: STRANGENESS CONFIRMED SCIENCE NEWS VOL. 130, 4-5 (1986)

NO AUTHOR CITED. THE MOST COMPLEX MAGNETIC FIELD SCIENCE VOL. 232, 1603 (1986)

VENUS

GRAMM,D. OBSERVING THE VEILED PLANET POPULAR ASTRONOMY VOL. 93(3) 18-19 (1986)

NO AUTHOR CITED. WHY IT NEVER RAINED ON VENUS NEW SCIENTIST VOL. 111(1524) 30 (1986)

THERMOSPHERE. II. GLOBAL CIRCULATION, TEMPERATURE, AND DENSITY VARIATIONS ICARUS VOL. 68, 284-312 (1986)
VENUS (Continued)

TAYLOR, H.A. JR. (NASA/GODDARD SPACE FLIGHT CENTER, LAB. FOR ATMOSPHERES, GREENBELT, MD 20771): OBSERVATIONS OF COMPOSITION FROM PIONEER VENUS

SPACE UTILIZATION

NO AUTHOR CITED. HIGHWAY TO SPACE SPACEFLIGHT VOL. 28, 194-197 (1986)

ASTEROIDS

COMETS

BERRY, R. + TALCOTT, R. WHAT HAVE WE LEARNED FROM COMET HALLEY? ASTRONOMY VOL. 14(9), 6-22 (1986)

EICHER, D.J. VIEWING HALLEY THIS FALL AND WINTER ASTRONOMY VOL. 14(10) 115 (1986)

EICHER, D.J. LAST LOOK AT HALLEY ASTRONOMY VOL. 14(9) 40-46 (1986)

EICHER, D.J. GOODBYE, HALLEY ASTRONOMY VOL. 14(9) 94-99 (1986)

EICHER, D.J. HALLEY FADES IN EARLY APRIL ASTRONOMY VOL. 14(7) 42-47 (1986)

EICHER, D.J. HALLEY BRIGHTENS ONE LAST TIME ASTRONOMY VOL. 14(8) 38-42 (1986)
COMETS (Continued)

KEITCH,G. HALLEY'S DOWN-UNDER DISPLAY POPULAR ASTRONOMY VOL. 33(3) 10-12 (1986)

KITAMURA,Y. + YAMAMOTO,T. (INST. OF SPACE AND ASTRONOMICAL SCIENCE, 4-6-1 KOMABA, MEGURO-KU, TOKYO 153, JAPAN) : HYDRODYNAMIC STUDY OF CONDENSATION AND SUBLIMATION OF ICE PARTICLES IN COMETARY ATMOSPHERES ICARUS VOL. 68, 266-275 (1986)

MASON,J. ASTRONOMERS ZOOM IN ON HALLEY'S NUCLEUS NEW SCIENTIST VOL. 111(1524) 28 (1986)

NO AUTHOR CITED. HALLEY FINALE SKY AND TELESCOPE VOL. 72, 118-123 (1986)

RAYCM,C. (STONEHILL COLLEGE, NORTH EASTON, MA 02356) : COMET HALLEY: AN APPRECIATION SKY AND TELESCOPE VOL. 72, 6-11 (1986)

RIDPATH,I. INTO THE HEART OF HALLEY'S COMET POPULAR ASTRONOMY VOL. 33(3) 6-9 (1986)

Meteors

METEORITES Vol. 21, 263-269 (1986)

METEORITES Vol. 21, 243-250 (1986)

GEOPHYSICAL RESEARCH LETTERS, VOL. 13, 969-972 (1986)

Heymann, D. (DEPT. OF GEOLOGY AND GEOPHYSICS, RICE UNIV., HOUSTON, TX 77251): BUCKMINSTERFULLERENE, ITS SIBLINGS, AND SOOT: CARRIERS OF TRAPPED INERT GASES IN METEORITES

SOLAR SYSTEM RESEARCH Vol. 20, 22-32 (1986)

Kirschbaum, C. (DEPT. OF PHYSICS, UNIV. OF CALIFORNIA AT BERKELEY, BERKELEY, CA 94720): IDENTIFICATION OF COSMOGENIC ARGON COMPONENTS IN ALLENDE BY LASER MICROPROBE

JOURNAL OF GEOLOGICAL EDUCATION Vol. 34, 140-165 (1986)

Nier, A.O. + Schlutter, D.J. (SCHOOL OF PHYSICS AND ASTRONOMY, UNIV. OF MINNESOTA, MINNEAPOLIS, MN 55455): MASS SPECTROMETRIC STUDY OF THE MERCURY ISOTOPES IN THE ALLENDE METEORITE

Papanastassiou, D.A. (DIV. OF GEOLOGICAL AND PLANETARY SCIENCES, CALIFORNIA INST. OF TECHNOLOGY, PASADENA, CA 91109): CHROMIUM ISOTOPE ANOMALIES IN THE ALLENDE METEORITE

Rubin, A.E. (INST. OF GEOPHYSICS AND PLANETARY PHYSICS, UNIV. OF CALIFORNIA, LOS ANGELES, CA 90024): ELEMENTAL COMPOSITIONS OF MAJOR SILIC PHASES IN CHONDRITES OF UNEQUILIBRATED CHONDRITIC METEORITES

METEORITES Vol. 21, 283-293 (1986)

Scott, E.R.D. + McKinley, S.G. + Keil, K. + Wilson, I.E. (INST. OF METEORITICS, UNIV. OF NEW MEXICO, ALBUQUERQUE, NEW MEXICO 87131): RECOVERY AND CLASSIFICATION OF THIRTY NEW METEORITES FROM ROOSEVELT COUNTY, NEW MEXICO

METEORITES (Continued)

MISCELLANEOUS (Cosmic Dust, Tektites, cretaceous
tertiary event...)

<table>
<thead>
<tr>
<th>NO. COPIES</th>
<th>PUBLICATION</th>
<th>AMOUNT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BOOKS

Lunar Bases & Space Activities of the 21st Century. $20.00 per copy; add $25.00 for foreign air mail
Origin of the Moon. $25.00 per copy; add $25.00 for foreign air mail
Planetary Science: A Lunar Perspective. $30.00 per copy; add $20.00 for foreign air mail
Chondrules and their Origins. $25.00 per copy; add $15.00 for foreign air mail

SLIDE SETS

Shuttle views the earth: Clouds from Space (40 slides & booklet) $15.00 per set U.S.; $20.00 Foreign
Shuttle views the earth: Geology from Space (40 slides & booklet) $15.00 U.S. $20.00 Foreign
Apollo landing sites (40 slides & booklet) $15.00 U.S.; $20.00 Foreign

TECHNICAL REPORTS

LPI TR-86-01 Annexstad, J.O. Schultz, L. Wanke, H. WORKSHOP ON ANTARCTIC METEORITES. 119 pp. U.S. $3.00; Foreign Air Mail: $7.75 Surface: $4.00
LPI TR-86-02 Pepin, R.O. WORKSHOP ON PAST AND PRESENT SOLAR RADIATION: THE RECORD IN METEORITIC AND LUNAR REGOLITH MATERIAL. 40 pp. U.S. $3.00; Foreign Air Mail: $5.50 Surface: $3.00
LPI TR-86-03 Spudis, P., Ryder, G. WORKSHOP ON GEOLOGY AND PETROLOGY OF THE APOLLO 15 LANDING SITE. iv, 126 pp. U.S. $3.00; Foreign Air Mail: $7.75 Surface: $4.00
LPI TR-86-04 Ashwal, L.D. WORKSHOP ON EARLY CRUSTAL GENESIS: THE WORLDS OLDEST ROCKS. 185 pp. U.S. $3.00; Foreign Air Mail: $7.75 Surface: $4.00
LPI TR-86-05 Horz, F. TRAJECTORY DETERMINATIONS AND COLLECTION OF MICRO-METEORIDS ON THE SPACE STATION. vi, 102 pp. U.S. $3.00; Foreign Air Mail: $7.75 Surface: $4.00

Prices effective 2/15/87
<table>
<thead>
<tr>
<th>NO. COPIES</th>
<th>PUBLICATION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TECHNICAL REPORTS (cont’d)</td>
</tr>
<tr>
<td></td>
<td>LPI TR-86-06 Reedy, R.C., Inglert, P. WORKSHOP ON COSMOGENIC NUCLIDES. 79 pp. U.S. $3.00; Foreign Air Mail: $6.00 Surface: $3.50</td>
</tr>
<tr>
<td></td>
<td>LPI TR-86-07 Carr, M. James, P. Leovy, C. Pepin, R. Pollack, J. MECA WORKSHOP ON THE EVOLUTION OF THE MARTIAN ATMOSPHERE. 52 pp. U.S. $3.00; Foreign Air Mail: $6.00 Surface: $3.50</td>
</tr>
<tr>
<td></td>
<td>LPI TR-86-08 Ashwal, L. Burke, K. DeWit, M. Wells, G. WORKSHOP ON THE EARTH AS A PLANET. 39 pp. U.S. $3.00; Foreign Air Mail: $5.50 Surface: $3.00</td>
</tr>
<tr>
<td></td>
<td>LPI TR-86-09 Lee, S. MECA WORKSHOP ON DUST ON MARS II. 77 p. U.S. $3.00; Foreign Air Mail: $6.00 Surface: $3.50</td>
</tr>
<tr>
<td></td>
<td>LPI TR-86-10 De Wit, M. J. Ashwal, L. D. WORKSHOP ON TECTONIC EVOLUTION OF GREENSTONE BELTS. 227 pp. U.S. $3.00; Foreign Air Mail: $9.50 Surface: $4.50</td>
</tr>
<tr>
<td></td>
<td>LPI CONTRIBUTIONS</td>
</tr>
<tr>
<td></td>
<td>C-599 PAPERS PRESENTED TO THE SYMPOSIUM ON MARS: EVOLUTION OF ITS CLIMATE AND ATMOSPHERE. vi, 115 p. U.S. $3.00; Foreign Air Mail $7.75; Surface $4.00</td>
</tr>
<tr>
<td></td>
<td>POSTER</td>
</tr>
<tr>
<td></td>
<td>LUNAR BASE POSTER U.S. $7.00; Foreign: $9.75 air mail, $7.50 surface</td>
</tr>
<tr>
<td></td>
<td>TOTAL</td>
</tr>
</tbody>
</table>

ORDER DEPT. LUNAR AND PLANETARY INSTITUTE 3303 NASA ROAD 1 HOUSTON, TEXAS 77058-4399

NAME: ____________________________ ADDRESS: __

PLEASE PRINT LEGIBLY. THIS IS YOUR MAILING LABEL.
Schaber G.G. Shoemaker E.M. Kozak R.C.
Is the Venusian Surface Really Old?

Plaut J. Arvidson R.
Spatial Distribution of Circular Features on Venus

Masursky H.
Geologic Evolution of Coronae (Complex Circular Features) on Venus

Stofan E.R. Head J.W. Parmentier E.M.
Corona Structures on Venus: Models of Origin

Crunpler L.S. Head J.W.
Bilateral Topographic Symmetry Across Aphrodite Terra, Venus

Head J.W. Crunpler L.S.
Evidence for Topographic Rises, Fracture Zones, Topographic Symmetry, Central Rift Zones, Transform Faults, and Crustal Spreading: Aphrodite Terra, Venus

Kozak R. C. Schaber G. G.
A Spreading Center on Venus?

Vorder Bruegge R.W. Head J.W. Campbell D.B.
Maxwell Montes, Venus: Geological Unit Map from Arecibo and Venera Data Sets and Evidence of Deformation History

Zuber M. T. Parmentier E. M.
Venus Tectonics: On the Relationship of Isostatic Topography to the Wavelengths of Surface Deformational Features

Grimm R.E. Solomon S.C.
Viscous Relaxation of Impact Crater Relief on Venus: Constraints on Crustal Thickness and Thermal Gradient

Clark P.E. Jurgens R.F. Kobrick M.
Characterization of Venus Subdued Terrains with Ground-based Radar-derived Data

Wood C. A. Francis P.
Venus Lives! (probably)

PRELIMINARY PROGRAM
18TH Lunar and Planetary Science Conference
March 16-20, 1987

Monday, March 16, 1987
VENUS TECTONIC STYLES, SURFACE STRUCTURES, AND GEOLOGIC HISTORY
8:30 a.m. Gilruth 104

POSTER PRESENTATIONS

Bindschadler D. Head J.W.
The Parquet Terrain of Venus: Geology and Surface Properties

Burke K. Sharpton V.L. Kennedy J.W.
Circular Structures of Diverse Origins in China: A Possible Resemblance to Northern Venus

PRESENTED BY TITLE ONLY

Crunpler L.S. Head J.W.
Regional Linear Cross-strike Discontinuities in the Western Aphrodite Highlands, Venus

Senske D.A. Head J.W.
Characterization of the Venus Equatorial Highlands Using Pioneer Venus Imaging Mode Date

Nature and Sequence of Volcanic and Tectonic Activity in Beta Regio, Venus

Sukhanov A.L.
Parquet on Venus: Areas of Regional Deformations

Sukhanov A.L.
"Spiders" on Venus: Ring Complexes
Monday, March 16, 1987
CARBONACEOUS CHONDRITES: INCLUSIONS AND MATRIX
8:30 a.m. Gilruth Gym

Nagahara H. Nagasawa H. Nakamura N. Matsui T.
HN3-1 (Type B-1 CAI) Formed From Isotopically and Chemically Heterogeneous
Interstellar Minerals and Condensates of the Solar System by Incomplete Melting

Nakamura N. Nagasawa H.
Rare Earth Distribution in the Allende Ca-Al Rich Inclusion HN3-1

MacPherson G. J. Crozaz G. Lundberg L. L.
Rare Earth Element Distribution in a Complex Type B1 Allende Inclusion,
an Ion Microprobe Study

Wark D.A. Boynton W.V.
Origin of Rims-I: The Evidence from Refractory Metals, Major Elements
and Mineralogy

Boynton W.V. Wark D.A.
Origin of CAI Rims-I: The Evidence from the Rare Earth Elements

Paque J.M.
CaAl407 from Allende Type A Inclusion NMMNH 4691

Davis A.M. MacPherson G.J. Hinton R.W. Laughlin J.R.
An Unaltered Group I Fine-Grained Inclusion from the Vigaro
Carbonaceous Chondrite

Beckett J.R. Stolper E.
The Stability of Hibonite in Silicate Melts: Implications for the Origin
of Hibonite-bearing Inclusions from Carbonaceous Chondrites

Blum J. D. Armstrong J. T. Hutcheon I. D. Wasserburg G. J.
Fremdlinge and the Cooling of CAI: Observational and Experimental Constraints
from the Coexistence of NiFe and RuOs

Morioka M.
Diffusion Coefficients of Cations and Oxygen in Synthesized Single Crystal
Melilites and Their Implications to the Thermal History of Allende CAI

Kuehner S. M. Grossman L.
Petrography and Mineral Chemistry of Spinel Grains Separated from the
Murchison Meteorite

McSween H.Y., Jr.
Matrix Compositions in Antarctic and Non-antarctic CM Carbonaceous Chondrites

Zolensky M.E.
Tochilinite in C2 Carbonaceous Chondrites: A Review with Suggestions

POSTER PRESENTATIONS

Nuth J. Nelson R. Thiemens M. Donn B.
Experimental Studies of Pre-Solar Grain Analogs

PRESENTED BY TITLE ONLY

Bischoff A. Palme H. Spettel B.
A37 - A Coarse-grained, Volatile Element-poor Ca, Al Rich Inclusion with
Huge Fremdlinge

Fisenko A.V. Ignatenko K.I. Ljul A.Yu. Lavrukhina A.K.
A Metal Particle in Ca, Al-rich Inclusion from the Efremovka CV Chondrite

Lavrukhina A.K. Ljul A.Yu. Kolesov G.M.
Occurrence of Sc-Rich Phases in the Kainsaz CO Carbonaceous Chondrite

Liu Y.-G. Rajan R.S. Schmitt R.A.
Mokola Ca-Al Inclusions (CAIs) with Negative and Positive Ce
Anomalies: Interim Report 2

Liu Y.-G. Schmitt R.A.
A Chemical Study of KABA (CV3 Chondrite) Inclusions

Burgess R. Wright I.P. Pillinger C.T.
Evidence for Hydrothermal Alteration in Meteorites of Higher Petrologic Type

Gooding J. L. Zolensky M. E.
Thermal Stability of Tochilinite

Nazarov M. Brandstatter F. Ulyanov A. A. Kolesov G. M. Kurat G.
Metal-Rich CAI's in Efremovka (C3)
Is There a Significant Periodic Signal in the Terrestrial Cratering Record?

Hildebrand A.R. Boynton W.V.
The K/T Impact Excavated Oceanic Mantle: Evidence from REE Abundances

Bhor B.F. Triplehorn D.M.
Flyash: An Analysis for Spherules in K-T Boundary Clays

Fehn U. Elmore D. Gove H.E.
Use of Accelerator Mass Spectrometry for the Determination of Osmium Isotopes

Kyte F.T. Zhou L. Wasson J.T.
Recent Evidence on the Nature of the Late Pliocene Impact Event

Jehanno C. Boclet D. Castellarin A. Rocchia R.
Unusual Cosmic Grains in a Jurassic Hardground

Siben W.
The Duolun Impact Crater, China

Robertson P.B. Grieve R.A.F. Alexopoulos J. Coderre J.
Shock Metamorphism at the Vredefort Structure, South Africa: Evidence for a Single Shock Event

Reimold W.U.
Fracture Density Statistics: Along Radial Traverses Through the Crystalline Basement of the Vredefort Dome, South Africa

Reimold W.U. Jessberger E.K. Stephan T.

Deutsch A.
The Sr Isotope System in Geological Samples Shocked up to 60 GPa

Wasson J.T.
A Multiple-Impact Origin of Southeast Asian Tektites

Glass B.P.
Coesite Associated with North American Tektite Debris in DSDP Site 612 on the Continental Slope off New Jersey

POSTER PRESENTATIONS

Esat T.M. Taylor S.R.
Mg Isotopic Composition of Microtektites and Flanged Australite Buttons

Koeberl C. Beran A.
Water Content of Tektites and Impact Glasses and Related Chemical Studies

Alexopoulos J. Grieve R.A.F. Robertson P.B.
Microscopic Lamellar Deformation Features in Quartz from Different Geologic Environments

Glass B.P. Burns C.A.
A New Term is Needed to Distinguish Impact Ejecta in the Form of Glassy Spherules Containing Primary Crystallites from Microtektites

Bhor B.F. Foord E.E.
Magnesioferrite from a Nonmarine K-T Boundary Clay in Wyoming

O'Keefe J.D. Ahrens T.J.
Meteorite Impact and the Extinction of Solar Radiation

PRESENTED BY TITLE ONLY

Valter A.A. Burmistrova V.V. Sharkin O.P.
Fe-Cr-Ni Inclusion in the Shock-metamorphosed Quartzite of the Terny Astrobleme

Raihklin A.I. Kirikov A.D. Kozlov V.S.
Fe3+ in Impact Glasses and Tektites

Glazovskaya L.I. Parfenova O.V.
Petrochemical Specific Features of the Logosk Crater Glasses

Badjukov D.D. Lobitzer H. Nazarov M.A.
Quartz Grains with Planar Features in the Triassic-Jurassic Boundary Sediments from Northern Limestone Alps, Austria

Nazarov M.A. Badjukov D.D. Barsukova L.D. Alekseev A.S.
Amount of Extraterrestrial Material in the K/T Boundary Sediments

Anufriev G.S. Boltenkov B.S. Kapitonov I.N. Usacheva L.V.
Cretaceous-Tertiary Event: Noble Gases in Turkmenia K/T Boundary Sediments

Badjukov D.D. Nazarov M.A. Alekseev A.S.
The K/T Event: Amount of the Crater Ejecta and the Possible Impact Site

Beutlich A. Teufel S. Metzler-Ferling A.
Isotope Systematics in Crystalline Clasts of Shock Stage I - III from the Polymict Breccia of the Haughton Crater, Canada
Zhou L. Kyte F.T.
Noble Metals and Other Siderophile Elements at the Precambrian-Cambrian Boundary at Zunyi, Guizhou, China

Garvin J.B. Blodgett H.W.
Suspected Impact Crater near Al Madafi, Saudi Arabia

Murty S. V. S. Shukla P. N. Goel P. S.
Nitrogen and Trace Elements in Huong Nong Tektites and Irgizites: Clues to Tektite and Impactite Formation

Reimold W. U. Barr J. M. Grieve R. A. F. Tredoux M.
INAA and Rb-Sr Isotope Analysis of Lake St. Martin Melt and Country Rocks

Durrheim R. J. Reimold W. U.
Evidence for 36 m.y. and 90 m.y. Periodicities in the Terrestrial Cratering Record

Basilevsky A. T. et al
Venera 15/16: New Understandings and Doubts

Bills B. Kobrick M.
Venus Topography: A Reappraisal

Bindschadler D.L. Parmentier E.M.
Tectonic Features Due to Gravitational Relaxation of Topography

Kiefer W. S. Hager B. H.
Mantle Plumes on Venus

Arvidson R. E. Elachi C. Kwok R. Curlander J. Saunders R. S.
Simulation of Venera and Magellan Radar Images From SEASAT Data

Greeley R. Marshall J. R. Pollack J. B.
Venus: Compositional and Mechanical Effects from Windblown Grains

Garvin J.B. Bryan W.B.
Venus Surface Compositions: Implications from Terrestrial Geochemical Analogies

Stability of Scapolites on Venus Surface

Majewski E.
Nonequilibrium Thermodynamics of Processes at the Inner - Outer Core Boundary in the Venus' Interior

Slade M.A. Zohar S. Jurgens R.F.
Venus: Improved Spin Vector from Goldstone Radar Observations

POSTER PRESENTATIONS

Grimm R.E. Solomon S.C.
Limits on Modes of Lithospheric Heat Transport on Venus From Impact Crater Density

Liu H.S.
Convective Stress Field in Venus

PRESENTED BY TITLE ONLY

Parmentier E.M. Stefan E.R. Head J.W.
A Finite Amplitude Necking Model for the Formation and Evolution of Rift Zones: Application to the Beta Regio Rift

Zolotov M.Yu.
Redox Conditions on Venus Surface

Shkuratov Yu.G. Kreslavsky M.A. Nikolayeva O.V.
Diagram Albedo-Color of Venus Surface According to Venera 13 Data
Monday, March 16, 1987

SESSION A · CARBONACEOUS CHONDRITES, CHONDRULES, AND THE NEBULA
1:30 p.m. · Gilruth Gym

Kring D.A.
Fe-Cr-rich Rims around Magnesian Chondrules in the Kainsaz (CO3) Chondrite

Palme H. · Fegley B.
Formation of FeO-bearing Olivines in Carbonaceous Chondrites by High Temperature Oxidation in the Solar Nebula

Hua X. · Adam J. · Palme H. · El Goresy A.
Fayalite-rich Rims Around Forsteritic Olivines in CAIs and Chondrules in Carbonaceous Chondrites: Types, Compositional Profiles and Constraints of Their Formation

Clayton R.W. · Mayeda T.K. · Rubin A.E. · Wasson J.T.
Oxygen Isotopes in Allende Chondrules and Coarse-grained Rims

Rubin A.E. · Wasson J.T.
Chondrules and Matrix in the Ornans CO3 Chondrites: Possible Precursor Components

Kurat G. · Palme H. · Brandstatter F. · Huth H.
Allende-AF: Undisturbed Record of Condensation, Accretion, and Metasomatism

Koeberl Ch. · Ntaflos Th. · Kurat G. · Chai C. F.
Petrology and Geochemistry of the Ningqiang (CV3) Chondrite

POSTER PRESENTATION

Matsui T. · Tajika E.
Fragmentation Process of Allende Meteorite During Its Atmospheric Passage

Rubin A. E. · Wang D. · Kallemeyn G. W.
The Ningqiang Carbonaceous Chondrite and the Origin of Aggregational and Granoblastic Chondrules

PRESENTED BY TITLE ONLY

Heymann D. · Read N.W.
Raman Study of Carbon in Allende

Van der Stap C.C.A.H. · Heymann D. · Vis R.D. · Verheul H.
Carbon in Dark Clasts of Allende

Shkuratov Y.G. · Stankevich N.P. · Antipova-Karataeva I.I.
On Spectral Albedo of Phobos and Deimos in UV-Range

Baryshnikova G.V. · Stakheeva S.A. · Lavrentjeva Z.A. · Ignatenko K.I.
Lavrukhina A.K.
Chondrules in the Kainsaz CO Chondrite: Mineral Composition and Assemblages; Comparison with the Allende CV and Ordinary Chondrite Chondrules

Ljul A.Yu. · Kolesov G.M. · Lavrukhina A.K.
Elemental Composition of Chondrules from the Murray CM Chondrite

SESSION B · SPACE UTILIZATION

Arnold J.R.
Ice at the Lunar Poles Revisited

Lucey P.G. · Roush T.R. · Owensby P.D. · Blaney D.
A Search for Water on the Moon at the Reiner Gamma Formation, A Possible Comet Impact Site

Gibson E. K. Jr. · Bustin R. · Skaugset A. · Carr R. H. · Wentworth S. J. · McKay D. S.
Hydrogen Distributions in Lunar Materials

Suitor J. W. · Schroeder J. E. · Steinbacher R. H.
The Development of a Zirconia Cell for Generating Oxygen from the Martian Atmosphere

Stephenson L. D. · Smith A. · Rigsbee J. M. · Hock V. F.
Development of Space-Based Containerless Coating Processes

Meek T.T. · Vaniman D.T. · Blake R.D. · Godbole M.J.
Sintering of Lunar Soil Stimulants Using 2.45 GHz Microwave Radiation

PRESENTED BY TITLE ONLY

Agosto W. N.
Lunar Volatiles: More than Meets the Eye?

Winisdoerffer F. · Brown J. · Ximenes S.
Project LEAP: Lunar Ecosystem and Architectural Prototype

Fielder J. · Leggett W.
Lunar Agricultural System Design Considerations

PRESENTED BY TITLE ONLY

Meier T. A.
Geometrically-Arrayed, Instrument-Carrying Elevated Cable Systems for Investigating Inaccessible Regions of the Lunar Surface
Monday, March 16, 1987
IMPACT PHENOMENA: THEORY AND EXPERIMENTATION
1:30 p.m. Gilruth 206

O’Keefe J. D. Ahrens T. J.
Impact Crater Maximum Depth of Penetration and Excavation

Holsapple K. A. Choe K. Y.
Impact Spall as a Mechanism for Surface Material Ejection

Mizutani H. Kawakami S. Takagi Y. Naide T. Hayakawa M.
Scaling Law of Impact Fragmentation and Coagulation

Melosh H. J. Hillgren V.
A Finite Element Study of Multiring Basin Tectonics

Schultz P. H.
Impact Velocity and Changes in Crater Shape, Morphology, and Statistics

Crawford D. Schultz P. H.
Electromagnetic Emissions from Low Angle Hypervelocity Impacts

Schultz P. H. Crawford D.
Impact Vaporization by Low-angle Impacts

Morgan T. H. Potter A. E. Zook H. A.
Impact Driven Supply of Sodium and Potassium to the Atmosphere of Mercury

Gerasimov M. V. Satovsky B. I. Mukhin L. M.
Mass-Spectrometrical Analyses of Gases Originated During Impulsive Evaporation of Meteorites and Terrestrial Rocks

Polanskey C. A. Ahrens T. J.
Shocked Calcite from an Explosion Crater - Electron Paramagnetic Resonance

Tyburczy J. A. Ahrens T. J.
Effect of Shock on the Kinetics of Thermally-induced Dehydration of Serpentine

Boslough M. B. Cygan R. T.
Shock-enhanced Dissolution of Silicate Minerals: An Important Planetary Surface Process

Heymann D. Celluchi T. A. Boyer H.
Raman Studies of Shocked Dunite, Enstatite, and Augite

POSTER PRESENTATION

Heymann D. Boyer H.
Raman Study of Experimentally Shocked Plagioclase

PRESENTED BY TITLE ONLY

Heymann D.
Raman Spectra of Carbon in the Canyon Diablo Iron Meteorite

Ahrens T. J. O’Keefe J. D.
Loss of the Earth’s Atmosphere from Giant Impacts

Lang B. Franaszczuk K.
Fracture Cascade for a Meteorite at Atmospheric Entry: Canyon Diablo, Odessa and Wolf Creek Irons

Schultz P. H. Gault D. E.
Transition Diameters for Crater Shape in Laboratory Experiments and on Planets

Schmidt R. M.
Preliminary Scaling Results for Crater Rim-Crest Diameter

Gerasimov M. V.
On the Release of Oxygen from the Intensively Shocked Meteorites and Terrestrial Rocks
Tuesday, March 17, 1987
SYMPOSIUM: LUNAR GEOSCIENCE OBSERVER (LGO) AND FUTURE LUNAR EXPLORATION
8:30 a.m. Gilruth 104

Schmitt H. H. [Invited Talk]
A Field Geologist's Return to the Moon

Sturms F. M. Jr.
Lunar Geoscience Observer Mission Overview

Drake M. J.
Lunar Geoscience Orbiter and the Origin of the Moon

Taylor G. J.
The Lunar Geoscience Observer's Role in Unraveling the Magmatic Evolution of the Moon

Hood L. L.
Contributions of an LGO Mission to the Solution of Lunar Geophysical Issues

Haskin L. A.
Toward Geochemical Prospecting for Lunar Ores

Spudis P. D. Hawke B. R.
The Use of Basin Ejecta to Determine Lunar Crustal Structure and Composition: Current Models and LGO Contributions

Pieters C. M.
Stratigraphy and Evolution of the Lunar Highland Crust: A Sampling of Vertical and Regional Heterogeneities

Fairchild K. O. Roberts M. L. Templin K. C.
Design and Engineering of Lunar Science Experiments: The Importance of Getting an Early Start

Reedy R. C. Drake D. M. Feldman W. C. Haines E. L. Metzger A. E.
Coupled Neutron/Gamma-Ray Spectroscopy from Lunar Orbit

Garvin J. B. Bufton J. L. Abshire J. B. Zuber M. T.
Laser Altimetry in Planetary Geology

POSTER PRESENTATIONS

Wallace R. A.
LGO Mission and Science Summary

Weissman P.
Post-perihelion Brightening of Halley's Comet: Spring Time for Halley

Colwell J. E. Jakosky B. M.
The Evolution of Topography on a Comet

Moroz V. Combes M. Bibring J. P. Coron N. Crovisier J. Encrenaz T.
Crifo J. F. Sanko N. Grigoriev A. Bockele-Morvan D. Gispert R.
Emerich C. Lamerre J. M. Rocad F. Krasnopolsky V. Owen T.
Detection of Parent Molecules in the 2.5-5 um Spectrum of Comet Halley with the IKS-Vega Experiment

Eberhardt P. Hodges R. R. Krankowsky D. Berthelier J. J.
Schulte W. Dolder U. Lammerzahl P. Hoffman J. H. Iliano J. M.
The D/H and 18O/16O Isotopic Ratios in Comet Halley

Jessberger E. K. Kissel J.
Bits and Pieces from Halley's Comet

Grin E.
Dust Emission of Comet Halley as Observed by In Situ Experiments

Mukhin L. M. Eivanov E. N. Fomenkova W. N. Khrorov V. N. Kissel J.
Prilutsky O. F. Zubkov B. V. Sagdeev R. Z.
Different Types of Dust Particles in Halley's Comet

Langevin Y. Kissel J. Bertaux J. L. Chassefiere E.
Impact Ionization Mass Spectrometry of Cometary Grains on Board Giotto, Vega 1 and Vega 2 Spacecrafts: Preliminary Statistical Analysis of Spectra in Compressed Modes

Clark B. C. Mason L. W. Kissel J.
Coma Particle Type Occurrences: Evidence for Chemical Heterogeneity in Comet Halley

Brownlee D. E. Wheelock M. M. Temple S. Bradley J. P. Kissel J.
A Quantitative Comparison of Comet Halley and Carbonaceous Chondrites at the Submicron Level

Albee A. L. Bradley J. G.
SEMPA—A Scanning Electron Microscope and Particle Analyzer for the CRAF Mission

Langevin Y. McDonnell J. A. M. Pillinger C. T. Schwegm G.
Stofler D. Wanek N. Wasserburg G. J. West R. M. Wood J. A.
The Comet Nucleus Sample Return Mission
POSTER PRESENTATIONS

McKay C. P.
The Role of Comets in the Prebiological Evolution of the Early Solar System

Stern S.A.
Cometary Capture Rates and Extra-Solar Oort Cloud Encounters

McFadden L. A., A'Hearn M. F., Feldman P. D.

PRESENTED BY TITLE ONLY

Korina M.I., Nazarov M.A., Barsukova L.D., Suponeva I.V., Kolesov G.M., Kolesnikov E.M.
Iridium Distribution in the Peat Layers from Area of Tunguska Event

Tsou P., Bernatowicz T., Burnett D., Chutjian A., Eberhart P., Mawhorter R., Neugebauer M., Albee A.

Wood C. A.
Rotation Periods of Halley's and Other Comets

Hartmann W.F., Cruikshank D.P., Tholen D.J.
Comets and Dark Asteroids: An Update

Frey H., Semeniuk J. A., Tokarzik S.
Common Age Resurfacing Events in the Elysium-Amazonis Knobby Terrain on Mars

Maxwell T.A., McGill G.E.
Ages of Fracturing and Resurfacing Along the Martian Dichotomy Boundary Between Nepenthes and Nilosyrtis Mensae

McGill G. E.
Topography: Buried Beneath the Plains of Utopia and Elysium, Mars

Watters T. R.
The Volcanic Plains Ridges of the Chryse and Amazonis Depressions

Borrello M. C.
Surficial and Structural Analysis of Large Patterned Fractures in Southern Acidalia Planitia, Mars

Tanaka K. L., Davis P. A.
History and Morphology of Faulting in the Noctis Labyrinthus-Claritas Fossae Region of Mars

Edgett K., Zimbelman J.R., Branstrator J.W.
The Geology of Pavonis Mons, Mars

Lucchitta B.K.
History of Valles Marineris

Wichman R., Schultz P. H.
Volcanic and Tectonic Evolution of Martian Impact Basins

Grizzaffi P., Schultz P. H.
Evidence for a Thick Transient Layer in the Isidis Impact Basin

Rossbacher L.A., Melendrez D.
Fracture Patterns on Earth and Mars: Pattern Genesis and Analysis

Bougan S.J., Leff C., Maxwell T.
Spectral and Thermal Characteristics of the Southeastern Amenthes Region, Mars

POSTER PRESENTATIONS

Barlow N. G.
A Revised Martian Relative Age Chronology and some Geologic Implications

Cattermole P.
The Geological Evolution of Alba Patera, Mars

De Hon R.A.
Striped Plains of Acidalia, Mars

Frey H., Semeniuk J. A.
Resurfacing in the Transition Zone in Eastern Mars: Evidence for Variation in Efficiency of Plains Formation
Grant J.A. Schultz P.H.
Possible Intense Vortex Tracks on Mars

McEwen A. S.
Mars as a Planet

McGill G.E.
Relative Ages of Faulting, Mesa Development, and Polygonal Terrane, Eastern Utopia Planitia, Mars

Plescia J.B.
Late-stage Flood Lavas in the Elysium Region, Mars

Raitala J. T.
Circular Mare Ridges

Raitala J. T.
Highland Wrinkle Ridges on Mars

Strickland E. L.
Color/Albedo Provinces and Surficial Units of the Central Equatorial Region of Mars: Definitions and Methods

Strickland E. L.
Latitude and Altitude Dependent Dust Opacity Variations and Their Effects on Martian Surface Observations

Zimbelman J. R. Leshin L. A. Edgett K. S. Skinner S.
High-resolution Thermal Inertias at Equatorial Latitudes on Mars

Zimbelman J. Mouginis-Mark P. J.
A Possible Volcanic Component in the Fine-Grained Materials Near Alba Patera, Mars

PRESENTED BY TITLE ONLY

Aubele J. C. Crumpler L. S.
The Significance of Block Size and Pit Diameter in Rocks at the Viking Lander Sites, Mars

Breed C. S. Davis P. A. McCauley J. F.
Accretion mantles on Mars: New Model for Viking Lander Site Characteristics and Implications for Mars Observer

Breed C. S. McCauley J. F. Davis P. A.
Ripple Blankets: Geomorphic Evidence for Regional Sand Sheet Deposits on Mars

Roth L. E. Saunders R. S. Thompson T. W.
Modification Styles of the Martian Impact Craters

Tanaka K. L. Scott D. H.
Eruptive History of the Elysium Volcanic Province of Mars

Wilhelms D. E. Baldwin R. J.
Uplands/Knobby-Terrain Relation on Mars

Neal C. R. Taylor L. A. Lindstrom M. M.
Mare Basalt Evolution: The Influence of KREEP-like Components

Neal C. R. Taylor L. A. Lindstrom M. M.
Very High Potassium (VHK) Basalt Petrogenesis: The Role of Granite and KREEP Components

Vetter S. Shervais J.
Petrology of Mare Basalt and Highland Clasts from Breccia 15498

Ryder G. Steele A.
Apollo 15 Olivine-Normative Mare Basalts: New Chemical Analyses, Chemical Dispersion, and Chemical Relationships

Hughes S. S. Delano J. W. Schmitt R. A.
Integrated Petrogenetic Models of Apollo 15 Yellow/Brown Glass, Green Glass and Olivine Mare Basalt, Consistent with the Magma Ocean - Cumulate Hypotheses

O'Keefe J. A. Ganapathy R.
Nickel-Iron Spherules in a Lunar Glass Sphere

Golombek M. P. Franklin B.
Physiographic Constraints on the Origin of Lunar Wrinkle Ridges

Coombs C. R. Hawke B. R.
Geologic and Remote Sensing Studies of Rima Mozard: Early Results

Craddock R. A. Greeley R.
Thickness and Volume of Mare Tsolokovsky, Lunar Farside

Farrand W. H.
Vertical Vs. Lateral Mixing of Highland Materials and Minimum Basalt Thickness in Northern Mare Facunditatis

Sullivan R.
Quantitative Evaluation of Ballistic Sedimentation

Jaumann R. Neukum G.
New Spectrophotometric Studies of the Lunar Surface: Distribution and Composition of Lithologic Units

Campbell B. A. Zisk S. H. Thompson T. W. Mouginis-Mark P. J.
Surface Scattering Properties from Lunar Radar Polarization Data

Helfenstein P. Veverka J.
Photometric Properties of Lunar Terrains Derived from Hapke's Equation
POSTER PRESENTATION

Shaw D., Middleton T.
Lunar Boron: A Preliminary Study

Zisk S. H., Mouginis-Mark P. J., Pettengill G. M., Thompson T. W.
New Very-High-Resolution Lunar Radar Measurements at 3.0 cm Wavelength: Initial Maps of the Hadley/Apollo 15 Area

Engel S., Neukum G., Jaumann R., Nagel E.
Lunar Light Plains: Ages and Composition

Hawke B. R., Coombs C. R.
Remote Sensing of the Rima Hyginus Region of the Moon

Coombs C. R., Hawke B. R., Geddis L. R.
Explosive Volcanism on the Moon

Thompson T. W.
Ultra-High-Resolution Radar Mapping of the Moon at 70 cm Wavelength

PRESENTED BY TITLE ONLY

Neal C. R., Taylor L. A.
Lunar Granite: An Enigma with a New Perspective

Delano J. W., Hughes S. S., Verplanck D. L., Schmitt R. A.
Multi-element Abundances of Individual Mare Volcanic Glasses by Collaborative Electron Microprobe and Neutron Activation Analyses: Interim Report 2

Simon S. B., Papike J. J.
Petrology of a Low-titanium Mare Basalt from Apollo 16 Regolith Breccia 60255

Schreiber W. D., McManus K. K., Settle S. A.
Oxidation-Reduction Chemistry in Diopside-Albite Melts

Okano O., Watson E. B., Tatsumoto M.
Partition Coefficients for REE and Hf Between Zircon and Liquid: Inferences for Lunar Granite Petrogenesis

Sharpton V. L.
Onset of Tectonic Rille Development in Southern Mare Serenitatis: Evidence for Incomplete Pre-mare Isostatic Compensation?

Crown D. A., Greeley R.
Structural Control of Lunar Sinuous Rilles in the Orientale Basin

Blount G., Greeley R.
Lunar Rotation and the Distribution of Dark-Halo Pyroclastic Deposits: A Cause for Asymmetric Ejecta Patterns

Williams J. G., Newhall X. X., Dickey J. O.
Lunar Science from Lunar Laser Ranging

Raitala J. T.
Thrust and Strike-Slip Faulting in Mare Ridge Tectonics

Schultz R. A.
Why Do Lunar Normal Faults Propagate Upward?

Rodionova Zh. F., Shevchenko V. V., Karlov A. A., Smolyakova T. F.
The Density Distribution of Lunar Craters of Different Degrees of Rim Sharpness and Completeness
Tuesday, March 17, 1987
1:30 p.m. Gilruth Gym

Clayton D.D.
Cosmic Chemical Memory of 48Ca/50Ti Correlation

Liffman K. Clayton D.
Stochastic Models of Refractory Interstellar Dust

Niemeyer S.
Ti Isotopes in Allende and Chainpur Chondrules and in the Kaidun Breccia

Ireland T.R.
Correlated Morphological, Chemical, and Isotopic Systematics from Murchison (CM) Hilonites

Fahey A.J. Goswami J.N. McKeegan K.D. Zinner E.K.
More Isotopic Measurements in CM Hilonites: Carbon, Oxygen and Silicon

Thiemens M.H. Meagher O.
Demonstration of a Mass Independent Isotopic Fractionation in CO Reaction

Prombo C.A. Hashimoto A. Birck J.L. Lugmair G.W. Grossman L.
Search for Correlated Isotopic Effects in Allende CAIs: II. Comparison with Mineralogical Data

Brigham C.A. Papanastassiou D.A. Hutcheon I.D. Armstrong J.T. Wasserburg G. J.
FUN Anomalies in Purple, Spinel-Rich Refractory Inclusions

Papanastassiou D.A. Brigham C.A.
FUN Isotopic Anomalies: Reincarnation in Purple Refractory Inclusions

Birck J.L. Prombo C.A. Lugmair G.W.
Ni and Cr Isotopes in Allende Inclusions

Fahey A.J. Zinner E.K.
Determination of the Fe Isotopic Ratios in Terrestrial Minerals and a Lance Hilonite-Hercynite Inclusion

Molini-Velsko C.A. Mayeda T.K. Clayton R.W.
Silicon Isotope Systematics During Distillation

Papanastassiou O.A. Wasserburg G.J.
Rayleigh Distillation Constraints on Mg Isotopic Compositions

Lee S.W. Crow D.A. Lancaster W. Greeley R.
Observations of Industrial Sulfur Flows: Implications for Io

Locations, Temperatures and Areas of Io's Hot Spots from Multi-Color Infrared Photometry of Occultations

Roush T.L. Singer R.B. McCord T.B.
The Spectral Reflectance, 0.6 to 4.3μm, of Particulate Mineral-Water Ice Mixtures

Kargel J.S.
Density and Viscosity Measurements of NH3-H2O Liquids

Thomas P.J. Schubert G.
Non-Newtonian Ice Rheology and the Retention of Craters on Ganymede

Golombek M.P. Banerdt W.B.
Early Thermal Profiles of Ganymede and Callisto

Golombek M. Banerdt B.
Failure Strength of Icy Lithospheres

Murchie S.L. Head J.W.
Evidence for the Existence of Major shear Zones on Ganymede

Schenk P.M. McKinnon W.B.
Dark Ray and Dark Floor Craters on Ganymede

James D.M. Melosh H.J.
Surface Tectonics from Sinker Induced Mantle Convection: Application to Miranda

Croft S.K.
Miranda Geology and Tectonics: A Non-catastrophic Interpretation

Thomas P.J. Reynolds R.T. Squyres S.W. Cassen P.M.
The Viscosity of Miranda

Strom R.G.
The Solar System Cratering Record: Voyager 2 Results at Uranus and Implications for the Origin of Impacting Objects

PRESENTED BY TITLE ONLY

Appendix - Program - Tuesday
Wednesday, March 18, 1987
MARS AND OTHER REMOTE SENSING
8:30 a.m. Gilruth 104

Francis P.
Variability in Spectral Signatures of Terrestrial Ignimbrites and Implications for Volcanology on Mars

Christensen P.R., Luth S.J.
Thermal-infrared Spectral Observations of Martian Candidate Materials in Emission

Salisbury J.W., Walter L.S., Verno N.

Walter L.S., Salisbury J.W., Verno N.
Spectral Variations in the Thermal Infrared Reststrahlen Band of Silicates

Blaney D.L., McCord T.B.
Telescopic Observations of Mars: A Search for Carbonates and Other Salts in the 4 um Region

Blaney D.L., Walsh P.A., McCord T.B.
Laboratory Spectral Measurements of Palagonite-Salt Mixtures in the Visible and Near Infrared -- Implications for Mars

Agresti D.G., Newcomb J.A., Morris R.V.
Mossbauer Study of Ultramicrocrystalline Hematite

Morris R.V., Lauer H.V. Jr., Murani A.V., Agresti D.G.
Ultramicrocrystalline Hematite: Properties and Occurrence on the Martian Surface

Burns R.G.
Gossans on Mars: Spectral Features Attributed to Jarosite

Bruckenthal E.A., Singer R.B.
Spectral Effects of Dehydration on Phyllosilicates

Arvidson R.E., Dale-Barnister M.A.
Mixing Patterns in Viking Orbiter Color Image Data for the Equatorial Region of Mars

Blount W., Greeley R., Christensen P.R., Arvidson R.
Aeolian Mixing and the Identification of Active Sand Surfaces on the Earth and Mars

POSTER PRESENTATIONS

Eluszkievicz J., Leiwa-Kopystynski J.
A Model of the Porous Structure of Icy Satellites

Global Geologic Mapping of Io

Zimbelman J.R., Burke K.
Triple-junction Rifting and Detachment Surfaces near the Pele Volcano on Io

Croft S.K.
Tectonism and Volcanism on Ganymede's Dark Terrain

Wu S.S.C., Schafer F.J., Jordan R., Howington A.E.
Topographic Map of Miranda

Thomas P.
Limb Topography of Uranian Satellites

PRESENTED BY TITLE ONLY

Kargel J.S.
Mass Distributions in Minimum Mass Models of the Jovian, Saturnian, Uranian, and Solar Nebulae

Strobel M.E., Masursky H.
New Features Named on the Moon and Uranian Satellites

Croft S.K., Kargel J., Lunine J.I.
Equations of State of Ammonia-water Liquid: Planetological Implications

Dolginov Sh.Sh.
On the Problem of Uranus Magnetic Field

Horner V.M., Greeley R.
Ganymede and Callisto: Impact Crater Ejecta Types

Murchie S.L., Head J.W.
Origin and Evolution of Furrows in the Dark Terrain of Ganymede

Murchie S.L., Head J.W.
Shear Zones on Ganymede: Global Nature and Effect on Grooved Terrain Formation

Murchie S.L., Head J.W.
A Preliminary Process-oriented Geologic History for Ganymede

Plescia J.B.
Cratering History of Miranda
Thompson T. W.
Goldstone Radar Observations of Mars: The 1986 Opposition

Armand N. A.
Radar Experiment for the Phobos Mission

POSTER PRESENTATIONS

Smith M. O.
Adams J. B.
Guinness E. A.
Arvidson R. E.
Viking Orbiter Multispectral Images Linked to Lander Images and Laboratory Analogs

Presley M. A.
Arvidson R. E.
Christensen P. R.
Characterization of Surficial Units in the Central Equatorial Region

Roush T. L.
Singer R. B.
McCord T. B.
Reflectance Spectra of Selected Phyllosilicates from .6 to 4.6 μm

Roush T. L.
Singer R. B.
McCord T. B.
Reflectance Spectra of Selected Mafic Silicates from .6 to 4.6 μm

Nedell S. S.
McKay C. P.
Possible Formation of Carbonates in Ancient Lakes in the Valles Marineris, Mars: A Search of the Mariner 6/7 IRS Dataset

Yon S. A.
Pieters C. M.
Specular Reflections and the Nature of Particle Surface Interactions

Wu S. S. C.
Howington A. E.
Digital Presentation of Mars Topography

PRESENTED BY TITLE ONLY

Pike R. J.
Toward Geometric Signatures for Planetary Terrain: An Assessment of Earth at 1:24,000 Scale

Pike R. J.
Information Content of Planetary Terrain: Varied Effectiveness of Parameters for the Earth

Calvin W. M.
Jakosky B. M.
Christensen P. R.
A Model of Diffuse Radar Scattering from Martian Surface Rocks

Wednesday, March 18, 1987
PLANETARY DIFFERENTIATION AND CRUSTAL GENESIS
8:30 a.m.
Girruth Gym

Kato T.
Irisune I.
Ringwood A. E.
Experimental Constraints on the Early Differentiation of the Earth's Mantle

Knittle E.
Jeanloz R.
The Melting of Metallic FeO to Over 100 GPa: Implications for Core Temperature and Composition

Anderson W. W.
Ahrens T. J.
Svendsen B.
Melting in the Fe-FeS System and its Relation to the Compositions of the Cores of Earth and Mars

Klock W.
Palme H.
Partitioning of Siderophile and Chalcophile Elements between Metal, Sulfide, Olivine, and Glass in a Naturally Reduced Basalt from Disko Island, Greenland

McDonough W. F.
Sun S. S.
Ringwood A. E.
Jagoutz E.
Rb and Cs in the Earth and Moon

Jones J. H.
Delano J. W.
A Three Component Model for the Bulk Composition of the Moon

Bertka C. M.
Holloway J. R.
Partial Melting of An Anhydrous Martian Mantle

Elthon D.
Composition and Petrogenesis of Parental Komatiite Liquids

Harrison D. A.
Phinney W. C.
Maczuga D. E.
Archean Anorthosites: Constraints on the Accumulation Process

Haskin L. A.
Dymek R. F.
Korotev R. L.
Nearly Pure Plagioclase Anorthosites: Lunar and St. Urbain

Salpas P. A.
Haskin L. A.
McCallum I. S.
Trace Element Distributions Among Subunits of A Stillwater Anorthosite Boulder

Nutman A. P.
Fryer B. J.
Bridgewater D.
The Origin and Significance of the Earliest Archean Naujiang (Supracrustal) Assemblage, Northern Labrador

Kusky T. M.
Kidd W. S. F.
De Paor D. G.
Simpson C.
Isachsen C.
Bradley D. C.
Bradley L.
On the Possible Ophiolitic Origin of Some Slave Province Greenstone Belts
POSTER PRESENTATIONS

Elthon D.
Cryptic Variation in Cumulate Dunites from Blow Me Down Mountain, Newfoundland

Elthon D.
Partitioning of Ni Between Olivine and High MgO Basaltic Liquids

Ashwal L.D. Burke K.
Types and Characteristics of Terrestrial Anorthosites

Pyle B. R. Neal C. R. Taylor L. A.
Ancient Oceanic Crust Subducted Beneath the Kaapvaal Craton: The Genesis of Eclogites in Kimberlites

Phinney W. C. Morrison D. A. Maczuga D. E.
Anorthosites: An Analog Study

Gomez-Moran C. Elthon D.
Geochemistry of Crustal Xenoliths from Xalapasco de la Joya (State of San Luis Potosi, Mexico)

Anderson W. W. Campbell A. J. Ahrens T. J.
Melting of Iron Sulfide and Iron Oxide at High Pressure

Warren P.H. Jerde E.A. Kellemeyn G.W.
Estimated Average Siderophile Element Contents of the Pristine Lunar Crust

PRESENTED BY TITLE ONLY

Yakovlev O.I. Markova O.M. Manson B.M.
The Role of Vaporization and Dissipation Processes in the Lunar History

Korotaev M.J. Nikishin A.M.
Formation Models of Sialic Matter and Problem of Crust Composition for the Terrestrial Planets

Lucey P.G. Hawke B.R.
Speculations on the Possible Compositional Layering of the Upper Ten Kilometers of the Lunar Crust

McCallum I.S.
The Parental Magmas of the Stillwater Complex

Moralev V. M. Glukhovsky M. Z.
Giant Circular Structures in the Precambrian Shields as Evidences of Early Crust-forming Processes on the Terrestrial Planets

Selivanovskaya T.V.
Petrochemical Trends of Crystallized Impact Melts

Gardner J. E. Haskin L. A. Brannon J. C.
Possible Assimilation by a Mafic Magma: The Endion Sill, Duluth, Minnesota

Wednesday, March 18, 1987
COSMIC DUST
8:30 a.m. Gilruth 206

Robin E. Jehanno C. Maurette M. Hammer C.
A Micrometeorite "Spectrum" for the Mass Distribution of Well Preserved Greenland Cosmic Dust Grains

Bonte Ph. Jehanno C. Maurette M. Robin E.
A High Abundance and Great Diversity of "Umelted" Cosmic Dust Grains on the West Greenland Ice Cap

Webb S.J. Zolensky M.E.
Characterization of Interplanetary Dust Particles from Antarctic Ice Samples

Bibring J-P. Surkhov Y. A. Borg J. Langevin Y. Salvetat P. Vassent B.
The Comet Experiment: First Results

Rietmeijer F.J.M.
Chondritic Interplanetary Dust and Primitive Chondrite Matrices: The Search for Chemically Pristine Solids in the Solar System

Bradley J. P. Brownlee D. E.
Fine-grained Matrices of Chondritic Interplanetary Dust Particles (IDP's)

Blake D. F. Bunch T. E. Mardinly A. J.
AEM Characterization of Phases in a Hydrated IDP

Blanford G.E. VerPloeg K.T. McKay D.S.
Microbeam Analysis of Interplanetary Dust Particles for Major Elements, Oxygen and Carbon

Flynn G.J. Sutton S.R.
First Cosmic Dust Trace Element Analyses with the Synchrotron XRF Microprobe

Nier A.O. Schlutter D.J. Brownlee D.E.
Helium and Neon Isotopes in Extraterrestrial Particles

McKeegan K.D. Swan P. Walker R.M. Wopenka B. Zinner E.
Hydrogen Isotopic Variations in Interplanetary Dust Particles

Esat T. M. Taylor S. R.
Mg Isotopic Composition of Some Interplanetary Dust Particles

Wopenka B.
Raman Observations of Individual Interplanetary Dust Particles

Walker R.M.
Are IDPs and Halley Dust Similar and, if so, So What?
POSTER PRESENTATIONS

Flynn G.J.
Earth Encounter Velocities and Exposure Ages of IDPs from Asteroidal and Cometary Sources

Robin E. Bonte Ph. Jehanno C.
A Search for a Relationship between Greenland Cosmic Dust

Zook H. A.
The Velocity Distribution and Angular Directionality of Meteoroids that Impact on an Earth-Orbiting Satellite

Tsou P. Peng S. T. J. Albee A. L.
Hypervelocity Intact Capture in Multiple-Layer Films

PRESENTED BY TITLE ONLY

Reedy R. C.
Cosmogenic Nuclide Production in Small Metallic Spherules

Rietmeijer F.J.M.
Silicone Oil: A Persistent Contaminant in Chemical and Spectral Microanalyses of Interplanetary Dust Particles

Rietmeijer, F.J.M.
Formation of High-temperature Minerals by Annealing of Amorphous, Low-temperature Anhydrous Chondritic Interplanetary Dust

Jehanno C. Maurette M. Robin E.
Fe/Ni Cosmic Dust Grains: A Comparison of the Greenland and Deep-Sea Collections

Wednesday, March 18, 1987
MARS CHANNELS AND VOLATILES
1:30 p.m. Gilruth 104

Tanaka K. L. MacKinnon D. J.
Development of the Chryse Hydrologic System, Mars

Carr M. H. Wu S. S. C. Jordan R. Schafer F. J.
Volumes of Channels, Canyons, and Chaos in the Circum-Chryse Region of Mars

De Hon R. A.
Eastern Lunae Planum Outflow Complex: Analogy to Overbank Flooding

MacKinnon D. J. Tanaka K. L.
Nirgal Vallis Basin: Some Questions on Fluvial and Regolith History

Craddock R. A. Greeley R. Christensen P. R.
Martian Outflow Channels: IRTM and Visual Observations

Gulick V. C. Baker V. R.
Origin and Evolution of Valleys on Martian Volcanoes: The Hawaiian Analog

Mouginis-Mark P. J. Zimbelman J. R.
Channels on Alba Patera, Mars: Evidence for Polygenic Eruptions

Jons H. P.
Large Fossil Mud Lakes or Giant Mud Sheet Floods in Syrtis Major (Isidis Planitia) and Mare Australe, Mars

Zent A. P. Fanale F. P. Postawko S. E.
Mars: Detection of Regolith H2O Sources from Space

Jakosky B. M.
Sublimination of Water from the Residual North Polar Cap on Mars

Haberle R. M. Jakosky B. M.
Transport of Water From the Residual North Polar Cap on Mars

Costard F. Dollfus A.
Thermokarstic Evolution of Impact Craters on Mars

POSTER PRESENTATIONS

Hart H. M. Jakosky B. M.
Vertical Distribution of Water Vapor in the Atmosphere of Mars: Error Analysis and Preliminary Results

Clifford S. M.
Theoretical Equilibrium Profiles of the Martian Perennial Polar Caps
Yanai K., Kojima H.
Japanese Collection of Antarctic Meteorites

Beckett J.R., Stolper E.
Constraints on the Origin of the Eucritic Melts: An Experimental Study

Longhi J., Pan V.
Olivine/Low-Ca Pyroxene Liquidus Relations and Their Bearing on Eucrite Petrogenesis

Tera F., Carlson R.W., Doctor H.
Isotopic and Petrologic Investigation of the Eucrites Cachari, Moore County, and Stannern

Paul R.L., Lipschutz N.E.
Volatile/Mobile Trace Elements in Eucrites—Antarctic/Non-Antarctic Comparisons

Jovanovic S., Reed G.W., Jr.
Mg-Geothermometry Applied to Achondritic Meteorites

Wohrmeyer C., Stoffler D.

Metzler K., Stoffler D.
Polymict Impact Breccias on the Eucrite Parent Body: I. Lithic Clasts in Some Eucrites and Howardites

Takeda H., Aoyama T.
Mineralogy of New Lithic Clasts in Polymict Eucrites and Possible Crystallization of Diogenite from a Eucritic Melt

Berkeley J.L.
Petrology and Compositional Trends in Five New Antarctic Diogenites

Hewins R.H.
The Howardite Parent Body: Composition and Crystallization Models

Schulze L.
Exposure Ages of Basaltic Achondrites and Implications for the Stratigraphy of Their Parent Body

Mittlefehldt D.W.
Petrogenesis of Mafic Lithologies in Mesosiderites

Warren P.H., Kallemeyn G.W.
A Trio of Meteoritic Dunites, and New Data for Shergotty

POSTER PRESENTATIONS

Agosto W.N.
P-FeO Systematics as an Indicator of Genetic Environment in the Basaltic Achondrite Group

Schutt J., Cassidy W.A., Fessler B.W.
AMLAMP (Antarctic Meteorite Location and Mapping Project): A Progress Report

Sutton S.R., Delaney J., Smith J.V., Prinz M.
Trace Element Contents of Eucritic Plagioclase Determined by Synchrotron X-ray Fluorescence

Khisina N.R., Petushkova L.V., Skripnik A.Y., Nazarov M.A., Zabelueva E.V.
Thermal History of Eucrites: Model Based on Pyroxene Geospeedometry

PRESENTED BY TITLE ONLY

Okulewicz S.C., Delaney J.S.
Petrography of EET 83212, 7, and EET 83229, 7: A Comparison of 2 New Howardites

Warren P.H., Kallemeyn G.W.
A Trio of Meteoritic Dunites, and New Data for Shergotty
Harper C. L.
Geochronology, Time-asymmetry and the Foundations of Quantum Mechanics

Harper C. L.
Comparative Resolutions of Possible Time Variations in the Weak Interaction Coupling Constant from Geochronology, Oklo and Primordial Nucleosynthesis

Lee T.
Inferences on the Evidence for Extinct Mn-53

The Abundance and Distribution of Be in Allende Inclusions

Pellas P. Perron C. Bourot-Denise M. Fieni C. Ghelis M. Crozaz G.
Very High Track-Densities in Forest Vale (H4) Murrillites: Was Cm248 Alive in the Early Solar System?

Chen J. H. Wasserburg G. J.
A Search for Evidence of Extinct Lead 205 in Iron Meteorites

Papanastassiou D. A. Ngo H. H. Wasserburg G. J.
Sr-Nd Systematics in Coarse-Grained Refractory Inclusions from Allende

Bernatowicz T. J. Hagee B. E. Fahey A. J.
Isotopic Fractionation of Kr and Xe Implanted in Solids at Very Low Energies

Ozima M. Zashu S.
Solar Type He and Ne in Diamonds

Lewis R. S. Ming T. Wacker J. F. Steel E.
Interstellar Diamonds in Meteorites

Epstein S. Krishnamurthy R. V. Cronin J. R. Pizzarello S. Yuen G. U.
Compositions of Hydrogen, Nitrogen and Carbon of Amino Acids and Carboxylic Acids from the Murchison Meteorite

Becker R. H.
Heavy Nitrogen in the Bells Carbonaceous Chondrite

Kerridge J. F. Shipp R. Chang S.
Isotopic Characterisation of Kerogen-like Material from the Murchison Carbonaceous Chondrite

Huss G. R.
Partial Evaporation of Pre-Solar Dust: The Mechanism of Fe/Silicate and Oxygen Isotopic Variation in Chondrites?
Strickland E. L.
Mars-Rocks on Phobos?, and a Possible Solution to the SNC Meteorite Abundance Problem

Gooding J. L., Wentworth S. J., Zolensky M. E.
Martian (?) Calcite and Gypsum in Shergottite EETA79001

Wright I. P., Grady M. M., Pilinger C. T.
Carbonates in EETA 79001: Terrestrial or Martian?

Solberg T. C., Burns R. G.
Iron Oxidation State and Weathering Studies of SNC and Other Antarctic Meteorites

Treiman A. H.
Geology of the Nakhliite Meteorites: Cumulate Rocks from Flows and Shallow Intrusions

Swindle T. D., Garrison D., Hohenberg C. M., Pilinger C. T.
Xenon and Argon in Nakhla and Lafayette: Evidence for Multiple "Martian" Components

McKay G., Wagstaff J., Le L. Lindstrom D. J.
Colson R. O.
Whitlockite/Melt Partitioning and Henry's Law: Shergottite Late-Stage Minerals

Nyquist L., Horz F., Wiesmann H., Shih C.-Y., Bansal B.
Isotopic Studies of Shergottite Chronology: II. Possible Effect of Shock Metamorphism on the Rb-Sr System

Nyquist L., Bansal B., Wiesmann H., Shih C.-Y., McKay G.
Isotopic Studies of Shergottite Chronology: II. Possible Effect of Contamination on the Sm-Nd System

Colson R. O., Nyquist L., McKay G., Horz F.
Possible Isotopic Resetting Mechanisms in Shergottite Meteorites

Wiens R. C.
CO2 and Noble Gas Emplacement into Basalt by Artificial Shock; Relevance to EETA79001 Trapped Gas

Bogard D., Horz F., Johnson P., Jordan J.
Further Studies on the Phenomenon of Shock-implanted Gases

Dreibus G., Wanke H.
Water, Rare Gasses and Other Volatiles on Mars
Thursday, March 19, 1987
THE SOLAR NEBULA AND PLANETARY ORIGINS
8:30 a.m. Gilruth Gym

Hartmann W. K. A Satellite/Asteroid Mystery and the Primordial Scattering of C Asteroids Through the Solar System

Wetherill G. W. Stewart G. R. Factors Controlling Early Runaway Growth of Planetesimals

Greenberg R. Rizk B. Incipient Runaway Growth of Planetesimals: Why the Biggest Bodies Were not all the Same Size

Carusi A. Greenberg R. Valsecchi G.B. Outcomes of Gravitational Encounters of a Planetesimal with a Planetary Embryo

Lissauer J. J. Greenzweig Y. Protoplanet Accretion Rates in a Disk of Planetesimals with Low Random Velocities

Cameron A. G. W. Benz W. Slattery W. L. Planetary Collision Calculations: Origin of Mercury

Benz W. Cameron A. G. W. Slattery W. L. Planetary Collision Calculations: Origin of the Moon

Vickery A. M. Melosh H. J. Orbital Evolution of the Vapor Jet from a Giant Impact

Taylor S.R. Loss of Volatile Elements During Impact Events in Relation to Lunar Composition and Origin

Hinton R.W. Clayton R.N. Olsen E.J. Davis A.M. Isotopic Mass Fractionation of Potassium in the Earth Compared to the Bulk Solar System

PRESENTED BY TITLE ONLY
Weidenschilling S. J. Davis D. R. Orbital Resonances in the Solar Nebula: Timescales and Resonance Widths

Hartmann W. K. Spaute D. Modelling of Lunar Accretion

Pechernikova G.V. Vitjazev A.V. Schmidt O. Yu. Erosion of Mercury Silicate Shell During Its Accumulation

Vitjazev A. V. Pechernikova G. V. Schmidt O. Yu. When Was the Gas Removed From the Zone of Terrestrial Planets?
LUNAR AND ASTEROIDAL REGOLITHS

8:30 a.m. Gilruth 206

LUNAR AND ASTEROIDAL REGOLITHS
Thursday, March 19, 1987

Wieler R. Baur H. Benkerl J.P. Pedroni A. Signer P.
Noble Gases in the Meteorite Fayetteville and in Lunar Ilmenite Originating from Solar Energetic Particles

Jordan J. Barrett R. A. Bogard D. D. McKay D. S.
Rare Gas and Petrological Studies of Disaggregated Size Separates of the Fayetteville Meteorite Breccia

Eugster O. Niedermann S.
Trapped Xe Isotopically Different from Modern Solar Wind Xe in Lunar Breccia 60018 and Black Glass 74001

Laurenzi M. A. Turner G.
Laser Probe 39Ar-40Ar Dating of Impact Melt Glasses in Lunar Breccia 15666

Basu A. Gerke T. McKay D. S.
Monomineralic Fragments in the 90-150 Micron Fraction of Soils in the Apollo 15 Drill Core Sections 15007/8 from Station 2

Composition and Maturity of the Van Serg Crater Core (Section 79002)

Wentworth S. J. McKay D. S.
Ancient Apollo 16 Regolith Breccias: Glass Populations and High Mg' Glass

Boschelli L. J. McKay D. S.
Differential Volatilization of Lunar Impact Glass Using Raleigh Fractionation Modeling

Delano J. W. Bouska V. Randa Z.
Geochemically Inferred Redox State in the Source-Materials of Terrestrial Impact Glasses

See T. H. Horz F. Cintala M. J. Smrekar S. Cardenas F.
Formation of Agglutinate-like Particles in an Experimental Regolith

Cintala M. J. Horz F. See T. H. Cardenas F.
The Evolution of Experimental Regoliths: Effects of Impact Velocity

Horz F. See T. H. Cintala M. J. Cardenas F.
Experimental Regolith Studies: The Effects of Initial Fragment Size on Commination Behavior

Cashore J.
Further Development of Monte Carlo Modeling of Lunar Megaregolith Thickness

POSTER PRESENTATION

Potter D. K. Stephenson A.
The Use of Anhysteretic and Rotational Remanent Magnetizations in Detecting Fine Iron Particles

Basu A. McKay D. S.
Petrologic Observations on the Apollo 15 Drill Core 15007/8

Schwarz C.
Preliminary Description of Double Drive Tube 79002/79001

PRESENTED BY TITLE ONLY

Cimbalmikova A. Frat Z. Rode O. D. Zemcik T.
Comparative Studies of Luna 16, 20 and 24 Regoliths by Means of Magnetic Resonance and Mossbauer Spectroscopy

Gibson E. K., Jr. Bustin R.
Hydrogen Abundances vs Depth in the Lunar Regolith: Results From an Apollo 15 Double Drive Tube and Deep Drill Core

Heavilon C. Basu A.
Compositions of Glass Fragments in Apollo 16 Regolith Breccias

Simon S. B. Papike J. J. Laul J. C. Hughes S. S. Schmitt R. A.
Apollo 16 Regolith Breccias and Soils: Comparative Petrology and Chemistry

Wentworth S. J. McKay D. S.
Glasses in Apollo 15 Regolith Breccias
Thursday, March 19, 1987
LUNAR HIGHLANDS
1:30 p.m. Gilruth 104

Korotev R. L. Haskin L. A.
Does the Lunar Crust Have a Europium Anomaly?

Warren P.H. Jerde E.A. Morris R.V.
"New" Lunar Regolith Breccias; An Enigmatic Ferroan Anorthosite from Apollo 14

James O.B.
Magnesian Members of the Lunar Ferroan Anorthosite Suite

Lugmair G.W.
The Age of the Lunar Crust: 60025 • Methuselah’s Legacy

Lindstrom M. M. Marvin U. B.
Geochemical and Petrologic Studies of Clasts in Apennine Front Breccia 15459

McGee J. J.
Petrologic Evaluation of the Components of Granulitic Breccia 67215

Dasch E.J. Nyquist L.E. Ryder G. Steele A.M. Wiesmann H. Bansal B.M.
Shih C.-Y.
Age of A15 Norites

Simon S.B. Papike J.J.
Petrology of the Apollo 15 Apennine Front II: Plutonic Rocks and KREEP Basalts

Laul J. C.
Chemistry of the Apollo 15 Apennine Front: Highland Lithologies

Takeda H. Mori H. Tagai T. Miyamoto M.
Mineralogy of Dominant Clasts in Lunar Regolith Breccia 60019 and Comparison to Yamato Lunar Meteorites

Ryder G. Lindstrom M. Willis K.
A Test of the Accuracy of the Preliminary Macroscopic Identification of Lunar Coarse-Fine Particles: INAA and Petrographic Studies of 2-4 mm Particles from the Apennine Front

Miura Y.
Different Formation Processes of the Moon, the Earth and Meteorites

Neal C.R. Taylor L.A. Lindstrom M.M.
Petrology and Geochemistry of Highland Clasts from Apollo 14 Breccias 14303, 14305, 14321

Korotev R. L.
Composition of Magnetic and Nonmagnetic Fractions of Noritic Impact Melt Breccias from Apollo 16

Simon S.B. Papike J.J.
Petrology of the Apollo 15 Apennine Front II: Plutonic Rocks and KREEP Basalts

Bernstein M.L.
15445 and 15435: Results of 39Ar-40Ar Age Dating

Takahashi K. Masuda A.
Ce Anomaly in Lunar Highland Samples: An Examination From REE Abundances and Rb-Sr Systematics for Lunar Meteorites

Takahashi K. Masuda A.
A Rb-Sr Age of an Impact Melted Sample in Lunar Meteorite

Ringwood A.E.
Gordian Knots and Lunar Origin

Seifert S. Ringwood A.E.
Metal-Silicate Partition Coefficients for Some Volatile Siderophile Elements and Implications for Lunar Origin

Lucey P.G. Hawke B.R.
Characterization of Mineralogical Changes with Longitude on the Lunar Nearside Based on Spectral Reflectance Measurements

Lucey P.G. Hawke B.R.
Criteria for the Remote Detection of Pristine Rock Using Near Infrared Reflectance Spectroscopy

Lucey P.G. Hawke B.R.
Probable Outcrops of Mg-Gabbronorite in the Lunar Highlands Detected by Near-Infrared Reflectance Spectroscopy
Thursday, March 19, 1987
ASTEROIDS AND COMETS
1:30 p.m. Gilruth Gym

Stern S.A.
Two Important Mechanisms Contributing to Cometary Evolution in the Oort Cloud

Patterson C.W.
Three-body Resonance Trapping and the Asteroid Belt

Oberst J.
On the Stability of "Meteorite Swarms" in Resonant Orbits - A Preliminary Study

Binzel R. P.
The Koronis Family: Possible Evidence for a Recent Catastrophic Disruption

Shoemaker E. M. Wolfe R. F.
Crater Production on Venus and Earth by Asteroid and Comet Impact

Wetherill G.W.
Ratio of Asteroidal Impact Rates on Mars and Earth

Wood C. A.
Phobos and Deimos: Comets, Asteroids or Left Over Pieces of Mars?

McFadden L. A. Vilas F.
The 3:1 Kirkwood Gap as Sources of Ordinary Chondrites: Perspectives from Spectral Reflectance

Gaffey M.J. Ostro S.J.
Surface Lithologic Heterogeneity and Body Shape for Asteroid (15) Eunomia: Evidence from Rotational Spectral Variations and Multi-color Lightcurve Inversions

Aoyama T. Hiroi T. Miyamoto M. Takeda H.
Absorption Spectra and Bulk Chemical Compositions of Achondritic Polymict Breccias with Reference to Characterization of the Surface of Vesta-like Asteroids

Gradie J. C. Tedesco E. F.
1986 DA and 1986 EB: Iron Objects in Near Earth Orbits

Britt D.T. Pieters C.M.
Effects of Small-Scale Surface Roughness on the Bidirectional Reflectance Spectra of Nickel-Iron Meteorites

POSTER PRESENTATIONS

Oberst J. Nakamura Y.
Lunar Seismic Impact Clusters - Evidence for the Presence of "Meteorite Streams"

Stooke P. J. Keller C. P.
Morphographic Projections for Maps of Non-spherical Worlds

Gaffey M.J.
Instrumental Requirements and Observational Strategies for Spectrophotometric Data Acquisition during a CRAF-type Asteroid Flyby

Zeigler K. W.
Gila Observatory: Serious Solar System Research at the High School Level

Tholen D.J. Bell J.F.
Evolution of Asteroid Taxonomy

Miyamoto M.
Diffuse Reflectances 0.25 to 25 um of an Enstatite Chondrite and Implications for Surface Minerals of M-type Asteroids

Hartmann W.F. Tholen D.J. Cruikshank D.P.
Studies of Trojan and Hilda Asteroids Lightcurves

Harris A. W.
Fourier Analysis of Asteroid Lightcurves: Some Preliminary Results
Thursday, March 19, 1987
SESSION A - UREILITES AND IRON METEORITES
1:30 p.m. Gilruth 206

Delaney J. S. Prinz M.
ALH82106/130 and the Fractionation of Augite-Bearing Ureilites

Prinz M. Weisberg M. K. Nehru C. E. Delaney J. S.
EET 83309, A Polymict Ureilite: Recognition of a New Group

Grady M. M. Pillinger C. T.
The EET 83309 Polymict Ureilite: Its Relationship to Other Ureilites on the
Basis of Stable Isotope Measurements

Ogata H. Takeda H. Ishii T.
Interstitial Ca-Rich Silicate Minerals in the Yamato Ureilites with
Reference to Their Origin

Goodrich C. A. Jones J. H.
Complex Igneous Activity on the Ureilite Parent Body

Kracher A. Benjamin T. M. Duffy C. J. Rogers P. S. Z.
Partitioning of Ga into Chromite, and Consequences for Iron Meteorite Formation

Van der Stap C. C. A. H. Heymann D. Vis R. Verheul H.
Simultaneous Measurements of C, N, and P in the Toluca and Algarobbo
Iron Meteorites

Kowalik J. A. Williams D. B. Goldstein J. I.
Formation of the Lamellar Structure in Group IA and IIICD Iron Meteorites

PRESENTED BY TITLE ONLY

Migdisova L. F. Yaroshevsky A. A. Zaslavskaya N. I.
Sulfide Nodules of Burkhalu Iron Meteorite

Prinz M. Weisberg M. K. Nehru C. E. Delaney J. S.
Bencubbin, Kakangari, Tucson and Renazzo: A Speculative Connection Between
Some of Their Major Components

SESSION B - COSMIC RAYS

Evans J. C. Reeves J. H. Reedy R. C.
Solar Cosmic Ray Produced Radionuclides in the Salem Meteorite

Yamashita H. Reedy R. C. Honda M. Arnold J. R.
10Be Profiles in Lunar Surface Rock 68815

Lavielle B. Marti X. Simonoff G.
Cosmic-ray-produced Kr in Core Samples of the St. Severin Meteorite

Eugster O.
Lunar Meteorites Y-82192 and Y-82193: Identical Cosmic-Ray Exposure History
and Terrestrial Age

Rajan S. Lugmair G. W.
Neutron Capture Effects in Asteroidal Regoliths

Englert P. A. J.
Cosmogenic Radionuclides in H-Chondritic Meteorite Finds

Reedy R. C.
Solar-Proton-Produced Nuclides in Meteorites

Nishiizumi K. Klein J. Middleton R. Arnold J. R.
Long-Lived Cosmogenic Nuclides in the Derrick Peak and Lazarev Iron Meteorites

Vanzani V. Sartori S. Tuniz C. Stievano B. M. Marzari F.
Effects of the Solar System Oscillations about the Galactic Plane on the
Cosmogenic Nuclide Production in Meteorites
Clark B. C. Thornton M.
Continuous Geochemical Surface Monitor and Hazard Detector for a Mars Rover

Gravitational Effects on Mars Neutron Spectra

Drake D. M. Feldman W. C. Reedy R. C. Jakosky B. M.
Neutron Mode of the Mars Observer Gamma Ray Spectrometer

Horstman K. C. Melosh H. J.
Experimental Drainage Pits as Possible Analogues to Structures on Phobos

Balog S. Pieri D. Plescia J. Davis P.
Profiles of Lava Flows at Alba Patera, Mars

Moore H. J.
The 1984 Mauna Loa Eruption and Planetary Lava Flows

Head J. W. Wilson L.
Magma Migration and Hawaiian-style Eruptions in Shield Volcano Rift Zones;
the Pu'u O'o Eruptive Episodes, Kilauea East Rift, Hawaii

Murali A. V. Mahoney J. J. Macdougall J. D. Deshmukh S. S. Blanchard D. P.
Chemical and Isotopic Systematics of Deccan Traps, Western India;
Evidence of Cyclic Volcanism and Discrete Magma Sources

Boudreau A. E. McCallum I. S.
Numerical Model of Fine-Scale Igneous Layering

Williams S. H. Greeley R.
Particle Speed and Concentration in the Saltation Cloud: Full Saltation Development and Choking

Woronow A. W. Love K. M.
A Statistical Study of Mercurian Crater Classes Applied to the Emplacement of the Inter crater Plains

POSTER PRESENTATIONS

McKinnon W. B.
Spherical-Shell vs. Flat-Plate Mascon Loading Models for Caloris

Plescia J. B. Golombek M. P.
Planetary Wrinkle Ridges - Low-Angle Thrust Faults

Spudis P. D. Guest J. E.
Paleogeologic Maps of Mercury's Surface

Mazierski P. F.
The Geology of Pine and Crater Buttes: A Basaltic Plains Volcanism Planetary Analog Study

Mustard J. F. Pieters C. M.
Variations in Composition of Kimberlite Dike Matrix Examined with Mapping Spectrometer Data

PRESENTED BY TITLE ONLY

Grant J. A. Schultz P. H.
A Possible Volatile-Rich Air-Fall Deposit in the Electris Region of Mars

Plescia J. B.
Geology and Cratering History of Ariel

Plescia J. B.
Cratering History of Umbriel, Titania, and Oberon

Davies A. G. Wilson L.
Photoclinometric Determination of Surface Topography and Albedo Variations on Io

Butler J. C.
The Graphical Analysis of Mixing Relationships - Ratio:Ratio Plots

Skobeleva T. P.
Some Peculiarities of Mercurial Crater Distribution and the Research of Craters with Intersecting Rims

Blount G. Barbera P. Pappalardo R. Posin S. Watts A.
The Occurrence of Seismically-Disrupted Antipodal Terrains
Friday, March 20, 1987
ORDINARY CHONDRITES
8:30 a.m. Gilruth Gym

Bell J.F. Keil K.
Spectral Alteration Effects in Chondritic Gas-Rich Breccias: Implications for S-Class and Q-Class Asteroids

Swindle T. D. Grossman J. N.
F-Xe Studies of Semarkona Chondrules: Dating Alteration

Steele I.M. Smith J.V.
Mineralogic Evidence for Pre-chondrule Nebular Conditions

Brearley A.J. Podosek F.A. Lugmair G.W.
Transmission Electron Microscopy of Graphite-Magnetite Aggregates in the Sharps (H3) Chondrite

Brannon J.C. Fugaz A. Rutherford M.J.
Mineralogic Evidence for Pre-chondrule Nebular Conditions

Guimon R.K. Lofgren G.E. Sears D.W.G.
Thermoluminescence Properties of Synthetic Feldspars: Implications for Chondrite Thermal Histories

Dehart J.M. Lofgren G.E. Sears D.W.G.
Electron-Microprobe and Cathodoluminescence of Glasses in Type 3 Ordinary Chondrites: Relevance to Metamorphism and Aqueous Alteration

Kurat G.
The OC Puzzle: Pre- and Synaccretionary Processes Offer a Solution

Hasan F.A. Haq M. Sears D.W.G.
Thermal Stability of Thermoluminescence in a Type 5 and Type 3.4 Ordinary Chondrite

Haq M. Hasan F.A. Sears D.W.G.
Thermoluminescence of Inclusions from the Cumberland Falls Meteorite

Martinetz C.P. Sears D.W.G.
Thermoluminescence and X-ray Diffraction Studies of Annealed Oligoclase

Kashkarov L.L. Genaeva L.I. Kalinic G.V. Lavrukhina A.K.
Nuclear Tracks of VH-group Solar Cosmic Rays in the Ordinary Chondrite Samples

Miyamoto M.
Constraints on Cooling Histories of Ordinary Chondrites as Inferred from Chemical Zoning of Porphyritic Olivine

Lofgren G. E.
Dynamic Crystallization Experiments on Chondrule Melts of Porphyritic Olivine Composition: Petrographic Comparison of Natural and Experimentally Produced Chondrules

Fugzan M. M. Ivanova M. A. Skripnik A. Ya. Schukolyukov Yu. A.
Age of Different Chondrules of Elenovka Meteorite

Hutson M.L.
A Closer Look at the Significance of Chemical Variations in Enstatite Chondrites

Nagamoto H. Nishikawa Y. Misawa K. Nakamura N.
REE, Ba, Sr, RB and K Characteristics of Chondrules from the Tieschitz (H3) Chondrite

Nagahara H.
Chondrules and Type B-1 CAIs Formed by the Same Heating Event

Ivanov A.V. Ulyanov A.A. Ustinov V.I. Shukolyukov Yu.A.
The Kaidun Meteorite: Oxygen Isotopic Composition

Alexeev V.A. Malishev V.V. Lavrukhina A.K.
Spallogenic Mn-53 in Some Meteorites

Alexeev V.A.
Statistics of Meteorite Falls
Friday, March 20, 1987

PLANETARY PHYSICS
8:30 a.m. Gilruth 206

Mao H. K. Finger L. Hazen R. Xa J. Hemley R. Jeffcoat A. Bell P. M.
Equation of State Synchrotron Experiments with Hydrogen at High Pressures

Hamilton D. C. Wells W. J. Holmes N. C. Radousky H. B. Ree F. H.
Properties of Synthetic Uranus at High Pressures and Temperatures

Turcotte D. L. Schubert G.
Tectonic Implications of Radiogenic Noble Gases in Planetary Atmospheres

Caffee M. W. Hudson G. B.
A Non-primordial Origin for Terrestrial 129Xe Anomalies

Abe Y. Matsui T.
Evolution of an Impact-generated H2O-CO2 Atmosphere and Formation of a Hot
Proto-Ocean on Earth

Squyres S.W. Reynolds R.T. Summers A.L. Shung F.
Accretional Heating of the Satellites of Saturn and Uranus

Thomas P.J. Schubert G.
Non-Newtonian Diapirism in the Icy Satellites

Hood L.L.
A Model for the Formation of Magnetic Anomalies Antipodal to Lunar Impact Basins

Runcorn S.K.
Primeval Lunar Satellites

POSTER PRESENTATIONS

Malcuit R. J. Winters R. R.
Computer Simulation Model for Early Post-Capture Lunar Orbital Evolution:
Implications for Thermal History of Moon and Earth

Chowdhary S.K. Runcorn S.K. Collinson D.W. Stephenson A.
Further Aspects of Lunar Paleointensity Determinations and the Origin of the
Ancient Lunar Magnetic Field

PRESENTED BY TITLE ONLY

Myasnikov V.P. Markov M.S. Timoshkina E.P. Rodinova Zh.F.
Comparative Estimate of Viscosity Parameters of the Earth's Group Planets
and Peculiarities of Their Tectonic Structures

Segatz M. Spohn T.
Interior Models of Io and the Surface Distribution of Hot Spots
<table>
<thead>
<tr>
<th>Speaker Name</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tyburczy J.A.</td>
<td>IMPACT PHENOMENA: THEORY & EXPERIMENTATION, MON.PM,G206</td>
</tr>
<tr>
<td>Van der Stap C.C.A.H.</td>
<td>UREILITES & IRON METEORITES, THURS.PM,G206</td>
</tr>
<tr>
<td>Vaniman D.T.</td>
<td>SPACE UTILIZATION, MON.PM,GYM</td>
</tr>
<tr>
<td>Vetter S.</td>
<td>LUNAR MARE BASALTS AND GEOLOGY, TUES.PM,G104</td>
</tr>
<tr>
<td>Vickery A.M.</td>
<td>THE SOLAR NEBULA & PLANETARY ORIGINS, THURS.AM,GYM</td>
</tr>
<tr>
<td>Vorder Brueg R.W.</td>
<td>VENUS TECTONIC STYLES, MON.AM,G104</td>
</tr>
<tr>
<td>Walker R.M.</td>
<td>COSMIC DUST, WED.AM,G206</td>
</tr>
<tr>
<td>Walsh P.A.</td>
<td>MARS & OTHER REMOTE SENSING, WED.AM,G104</td>
</tr>
<tr>
<td>Walter L.S.</td>
<td>MARS & OTHER REMOTE SENSING, WED.AM,G104</td>
</tr>
<tr>
<td>Mark D.A.</td>
<td>CARBONACEOUS CHONDRITES: INCLUSIONS & MATRIX, MON.AM,GYM</td>
</tr>
<tr>
<td>Warren P.H.</td>
<td>LUNAR HIGHLANDS, THURS.PM,G104</td>
</tr>
<tr>
<td>Warren P.H.</td>
<td>EUCRITES & ASSOCIATES, WED.PM,GYM</td>
</tr>
<tr>
<td>Wassenburg G.J.</td>
<td>NUCLEOSYNTHESIS: ISOTOPE ANOMALIES, TUES.PM,GYM</td>
</tr>
<tr>
<td>Wasson J.T.</td>
<td>IMPACT PHENOMENA: TERRESTRIAL OBSERVATIONS, MON.AM,G206</td>
</tr>
<tr>
<td>Watters T.R.</td>
<td>MARS GEOLOGY & GEOMORPHOLOGY, TUES.AM,G206</td>
</tr>
<tr>
<td>Webb S.J.</td>
<td>COSMIC DUST, WED.AM,G206</td>
</tr>
<tr>
<td>Weissman P.</td>
<td>HALLEY & COMET EXPLORATION, TUES.AM,GYM</td>
</tr>
<tr>
<td>Wentworth S.J.</td>
<td>LUNAR & ASTEROID REGOLITHS, THURS.AM,G206</td>
</tr>
<tr>
<td>Wetherill G.W.</td>
<td>RESH SOLAR NEBULA & PLANETARY ORIGINS, THURS.AM,GYM</td>
</tr>
<tr>
<td>Wetherill G.W.</td>
<td>ASTEROIDS & COMETS, THURS.PM,GYM</td>
</tr>
<tr>
<td>Wicnman R.</td>
<td>MARS GEOLOGY & GEOMORPHOLOGY, TUES.AM,G206</td>
</tr>
<tr>
<td>Wiens R.C.</td>
<td>SNC METEORITES, THURS.AM,G104</td>
</tr>
<tr>
<td>Williams S.H.</td>
<td>PLANETARY GEOLOGIC PROCESSES, FRI.AM,G104</td>
</tr>
<tr>
<td>Wilson L.</td>
<td>PLANETARY GEOLOGIC PROCESSES, FR1.AM,G104</td>
</tr>
<tr>
<td>Wood C.A.</td>
<td>ASTEROIDS & COMETS, THURS.PM,GYM</td>
</tr>
<tr>
<td>Wood C.A.</td>
<td>VENUS TECTONIC STYLES, MON.AM,G104</td>
</tr>
<tr>
<td>Wood J.A.</td>
<td>ONSET OF ACCRETION, WED. EVE., G104</td>
</tr>
<tr>
<td>Wopenka B.</td>
<td>COSMIC DUST, WED.AM,G206</td>
</tr>
<tr>
<td>Woronow A.W.</td>
<td>PLANETARY GEOLOGIC PROCESSES, FRI.AM,G104</td>
</tr>
<tr>
<td>Wright I.P.</td>
<td>SNC METEORITES, THURS.AM,G104</td>
</tr>
<tr>
<td>Yamai K.</td>
<td>EUCRITES & ASSOCIATES, WED.PM,GYM</td>
</tr>
<tr>
<td>Zent A.P.</td>
<td>MARS CHANNELS & VOLATILES, WED.PM,G104</td>
</tr>
<tr>
<td>Zinner E.K.</td>
<td>NUCLEOSYNTHESIS: ISOTOPE ANOMALIES, TUES.PM,GYM</td>
</tr>
<tr>
<td>Zolensky M.E.</td>
<td>CARBONACEOUS CHONDRITES: INCLUSIONS & MATRIX, MON.AM,GYM</td>
</tr>
<tr>
<td>Zuber M.T.</td>
<td>VENUS TECTONIC STYLES, MON.AM,G104</td>
</tr>
</tbody>
</table>
MARS GEOLOGY & GEOMORPHOLOGY, TUES.AM,G206

PLANETARY DIFFERENTIATION & CRUSTAL GENESIS, WED.AM,GYM
ORDINARY CHONDRIDES, FRI.AM,GYM

SYMPOSIUM: LUNAR GEO SCIENCE OBSERVER (LGO), TUES.AM,G104
MARS LUNAR BASALTS AND GEOL OGY, TUES.PM,G104

ASTEROIDS & COMETS, THURS.PM,GYM
LUNAR LUNAR BASALTS AND GEOL OGY, TUES.PM,G104

PLANETARY DIFFERENTIATION & CRUSTAL GENESIS, WED.AM,GYM
SNC METEORITES, THURS.AM,G104

SYMPOSIUM: LUNAR GEO SCIENCE OBSERVER (LGO), TUES.AM,G104
IMPACT PHENOMENA: TERRESTRIAL OBSERVATIONS, MON.AM,G206
VENUS INTERIOR, MODELS & SURFACE GEOCHEM., MON.PM,G104
IMPACT PHENOMENA: THEORY & EXPERIMENTATION, MON.PM,G104
ORDINARY CHONDRIDES, FRI.AM,GYM

IMPACT PHENOMENA: THEORY & EXPERIMENTATION, MON.PM,G206
LUNAR & ASTEROIDAL REGOLITHS, THURS.AM,G206
EXTINCT-NUCLEIDE CHRONOLOGY; PRIMITIVE COMP., WED.PM,G206
SPACE UTILIZATION, MON.PM,GYM

THE OUTER SOLAR SYSTEM, TUES.PM,G206
UREILITES & IRON METEORITES, THURS.PM,G206
LUNAR MARE BASALTS AND GEOLOGY, TUES.PM,G104

PLANETARY DIFFERENTIATION & CRUSTAL GENESIS, WED.AM,GYM
IMPACT PHENOMENA: TERRESTRIAL OBSERVATIONS, MON.AM,G206
SNC METEORITES, THURS.AM,G104
NUCLEOSYNTHESIS: ISOTOPE ANOMALIES, TUES.PM,GYM

IMPACT PHENOMENA: TERRESTRIAL OBSERVATIONS, MON.AM,G206
THE SOLAR NEBULA & PLANETARY ORIGINS, THURS.AM,GYM
LUNAR HIGHLANDS, THURS.PM,G104

SYMPOSIUM: LUNAR GEO SCIENCE OBSERVER (LGO), TUES.AM,G104
LUNAR HIGHLANDS, THURS.PM,G104

SYMPOSIUM: LUNAR GEO SCIENCE OBSERVER (LGO), TUES.AM,G104
LUNAR HIGHLANDS, THURS.PM,G104

MARS LUNAR BASALTS AND GEOLOGY, TUES.PM,G104

THE OUTER SOLAR SYSTEM, TUES.PM,G206

Greeley R.
Greenberg R.
Greenweig Y.
Grieve R.A.F.
Grogg A.
Grimm R.E.
Grizzaliffi P.
Grossman J.N.
Grossman L.
Grossman L.
Grun E.
Guest J.E.
Guimont R.K.
Gundness E.A.
Gulick V.C.
Haberlin R.M.
Hager B.E.
Hauger B.N.
Haines E.L.
Hamilton D.C.
Hammer C.
Hao M.
Harper C.L.
Harris A.W.
Hart A.W.
Hart H.M.
Hartmann W.F.
Hartmann W.F.
Hartmann W.K.
Hartmetz C.P.
Hassan F.A.
Hashimoto A.
Haskins L.A.
Haskins L.A.
Haskins L.A.
Haskins L.A.
Hawke B.R.
Hawke B.R.
Hawke B.R.
Hawke B.R.

MARS CHANNELS & VOLATILES, WED.PM,G104
THE SOLAR NEBULA & PLANETARY ORIGINS, THURS.AM,GYM
THE SOLAR NEBULA & PLANETARY ORIGINS, THURS.AM,GYM

IMPACT PHENOMENA: TERRESTRIAL OBSERVATIONS, MON.AM,G206
HALLEY & COMET EXPLORATION, TUES.AM,GYM
VENUS INTERIOR, MODELS & SURFACE GEOCHEM., MON.PM,G104
VENUS TECTONIC STYLES, MON.PM,G104
MARS GEOLOGY & GEOMORPHOLOGY, TUES.AM,G206
ORDINARY CHONDRIDES, FRI.AM,GYM

NUCLEOSYNTHESIS: ISOTOPE ANOMALIES, TUES.PM,GYM
CARBONACEOUS CHONDRIDES: INCLUSIONS & MATRIX, MON.AM,GYM
HALLEY & COMET EXPLORATION, TUES.AM,GYM

PLANETARY GEOLOGIC PROCESSES, FRI.AM,G104
ORDINARY CHONDRIDES, FRI.AM,GYM

MARS CHANNELS & VOLATILES, WED.PM,G104
MARS CHANNELS & VOLATILES, WED.PM,G104

EXTINCT-NUCLEIDE CHRONOLOGY; PRIMITIVE COMP., WED.PM,G206
VENUS INTERIOR, MODELS & SURFACE GEOCHEM., MON.PM,G104

SYMPOSIUM: LUNAR GEO SCIENCE OBSERVER (LGO), TUES.AM,G104
PLANETARY PHYSICS, FRI.AM,G206
COSMIC DUST, WED.AM,G206
ORDINARY CHONDRIDES, FRI.AM,GYM

ASTEROIDS & COMETS, THURS.PM,GYM
HALLEY & COMET EXPLORATION, TUES.AM,GYM

THE SOLAR NEBULA & PLANETARY ORIGINS, THURS.AM,GYM
ORDINARY CHONDRIDES, FRI.AM,GYM

ORDINARY CHONDRIDES, FRI.AM,GYM

NUCLEOSYNTHESIS: ISOTOPE ANOMALIES, TUES.PM,GYM
PLANETARY DIFFERENTIATION & CRUSTAL GENESIS, WED.AM,GYM
LUNAR HIGHLANDS, THURS.PM,G104

SYMPOSIUM: LUNAR GEO SCIENCE OBSERVER (LGO), TUES.AM,G104
LUNAR HIGHLANDS, THURS.PM,G104

SYMPOSIUM: LUNAR GEO SCIENCE OBSERVER (LGO), TUES.AM,G104
LUNAR HIGHLANDS, THURS.PM,G104

PLANETARY DIFFERENTIATION & CRUSTAL GENESIS, WED.AM,GYM
IMPACT PHENOMENA: THEORY & EXPERIMENTATION, MON.PM,G206
THE SOLAR NEBULA & PLANETARY ORIGINS, THURS.AM,GYM

VENUS CHANNELS & VOLATILES, WED.PM,G104
PLANETARY PHYSICS, FRI.AM,G206
VENUS TECTONIC STYLES, MON.PM,G104

THE OUTER SOLAR SYSTEM, TUES.PM,G206

PLANETARY GEOLOGIC PROCESSES, FRI.AM,G104
VENUS TECTONIC STYLES, MON.PM,G104

VENUS INTERIOR, MODELS & SURFACE GEOCHEM., MON.PM,G104
LUNAR & ASTEROIDAL REGOLITHS, THURS.AM,G206

LP18 No. 46 Appendix - Author Index
<table>
<thead>
<tr>
<th>Author</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lunine J.I.</td>
<td>MARS & OTHER REMOTE SENSING, WED.AM,G104</td>
</tr>
<tr>
<td>Luth S.J.</td>
<td>ORDINARY CHONDrites, FRI.AM,104</td>
</tr>
<tr>
<td>Macdonald J.D.</td>
<td>PLANETrARY GEODESY PROCESSES, FRI.AM,G104</td>
</tr>
<tr>
<td>Mack D.E.</td>
<td>CARBONACEOUS CHONDrites: INCLUSIONS & MATRIX, MON.AM,GYM</td>
</tr>
<tr>
<td>MacPherson G.J.</td>
<td>PLANETrARY DIFFERENTIATION & CRUSTAL GENESIS, WED.AM,GYM</td>
</tr>
<tr>
<td>MacPherson G.J.</td>
<td>SYMPOSIUM: LUNAR GEOSCIENCE OBSERVER (LGO), TUES.AM,G104</td>
</tr>
<tr>
<td>Mahoney J.J.</td>
<td>PLANETrARY GEODESY PROCESSES, FRI.AM,G104</td>
</tr>
<tr>
<td>Majewski E.</td>
<td>VENUS INTERIOR, MODELS & SURFACE GEOCHEM., MON.AM,G104</td>
</tr>
<tr>
<td>Malclu R.J.</td>
<td>PLANETARY PHYSICS, FRI.AM,G206</td>
</tr>
<tr>
<td>Malishev V.V.</td>
<td>PLANETARY DIFFERENTIATION & CRUSTAL GENESIS, WED.AM,GYM</td>
</tr>
<tr>
<td>Manson B.M.</td>
<td>PLANETARY PHYSICS, FRI.AM,G206</td>
</tr>
<tr>
<td>Mao H.K.</td>
<td>COSMIC DUST, WED.AM,G206</td>
</tr>
<tr>
<td>Mardinessi A.J.</td>
<td>VENUS INTERIOR, MODELS & SURFACE GEOCHEM., MON.AM,G104</td>
</tr>
<tr>
<td>Markov M.S.</td>
<td>COSMIC RAYS, THURS.PM,G206</td>
</tr>
<tr>
<td>Marshall J.R.</td>
<td>THE OUTER SOLAR SYSTEM, TUES.PM,G206</td>
</tr>
<tr>
<td>Marti K.</td>
<td>THE OUTER SOLAR SYSTEM, TUES.PM,G206</td>
</tr>
<tr>
<td>Marvin U.B.</td>
<td>CARBONACEOUS CHONDrites: INCLUSIONS & MATRIX, MON.AM,GYM</td>
</tr>
<tr>
<td>Marzari F.</td>
<td>PLANETARY PHYSICS, FRI.AM,G206</td>
</tr>
<tr>
<td>Mason L.W.</td>
<td>COSMIC DUST, WED.AM,G206</td>
</tr>
<tr>
<td>Masuda A.</td>
<td>LUNAR HIGHLANDS, THURS.PM,G104</td>
</tr>
<tr>
<td>Masursky H.</td>
<td>VENUS TECTONIC STYLES, MON.AM,G104</td>
</tr>
<tr>
<td>Masursky H.</td>
<td>THE OUTER SOLAR SYSTEM, TUES.PM,G206</td>
</tr>
<tr>
<td>Matsui T.</td>
<td>CARBONACEOUS CHONDrites: INCLUSIONS & MATRIX, MON.AM,GYM</td>
</tr>
<tr>
<td>Matsui T.</td>
<td>PLANETARY PHYSICS, FRI.AM,G206</td>
</tr>
<tr>
<td>Mauretta M.</td>
<td>COSMIC RAYS, THURS.PM,G206</td>
</tr>
<tr>
<td>Maxhottet R.</td>
<td>CARBONACEOUS CHONDrites: INCLUSIONS & MATRIX, MON.AM,GYM</td>
</tr>
<tr>
<td>Maxwell T.A.</td>
<td>PLANETARY DIFFERENTIATION & CRUSTAL GENESIS, WED.AM,GYM</td>
</tr>
<tr>
<td>Mayeda T.K.</td>
<td>SYMPOSIUM: LUNAR GEOSCIENCE OBSERVER (LGO), TUES.AM,G104</td>
</tr>
<tr>
<td>Mazierski P.F.</td>
<td>PLANETrARY GEODESY PROCESSES, FRI.AM,G104</td>
</tr>
<tr>
<td>McCallum I.S.</td>
<td>PLANETARY DIFFERENTIATION & CRUSTAL GENESIS, WED.AM,GYM</td>
</tr>
<tr>
<td>McCallum I.S.</td>
<td>PLANETARY GEODESY PROCESSES, FRI.AM,G104</td>
</tr>
<tr>
<td>McDonald J.F.</td>
<td>MARS GEOLOGY & GEOMORPHOLOGY, TUES.PM,GYM</td>
</tr>
<tr>
<td>McCord T.B.</td>
<td>MARS & OTHER REMOTE SENSING, WED.AM,G104</td>
</tr>
<tr>
<td>McDonnell J.A.M.</td>
<td>THE OUTER SOLAR SYSTEM, TUES.PM,G206</td>
</tr>
<tr>
<td>McGee N.</td>
<td>CARBONACEOUS CHONDrites: INCLUSIONS & MATRIX, MON.AM,GYM</td>
</tr>
<tr>
<td>McFadden L.A.</td>
<td>CARBONACEOUS CHONDrites: INCLUSIONS & MATRIX, MON.AM,GYM</td>
</tr>
<tr>
<td>McFadden L.A.</td>
<td>PLANETARY DIFFERENTIATION & CRUSTAL GENESIS, WED.AM,GYM</td>
</tr>
<tr>
<td>McKay C.P.</td>
<td>PLANETARY PHYSICS, FRI.AM,G206</td>
</tr>
<tr>
<td>McKay D.S.</td>
<td>SPACE UTILIZATION, MON.PM,GYM</td>
</tr>
<tr>
<td>McKay D.S.</td>
<td>LUNAR & ASTEROIDAL REGOLITHS, THURS.AM,G206</td>
</tr>
<tr>
<td>McKay D.S.</td>
<td>COSMIC DUST, WED.AM,G206</td>
</tr>
<tr>
<td>McKay G.</td>
<td>SNC METEORITES, THURS.AM,G104</td>
</tr>
<tr>
<td>McKay G.</td>
<td>COSMIC DUST, WED.AM,G206</td>
</tr>
<tr>
<td>McKeehan K.D.</td>
<td>NUCLEOSYNTHESIS: ISOTOPE ANOMALIES, TUES.PM,GYM</td>
</tr>
<tr>
<td>McKinnon W.B.</td>
<td>SYMPOSIUM: LUNAR GEOSCIENCE OBSERVER (LGO), TUES.AM,G104</td>
</tr>
<tr>
<td>Meagher D.</td>
<td>PLANETrARY GEODESY PROCESSES, FRI.AM,G104</td>
</tr>
<tr>
<td>Meek T.K.</td>
<td>MARS & OTHER REMOTE SENSING, WED.AM,G104</td>
</tr>
<tr>
<td>Melendez D.</td>
<td>LUNAR BASALTS AND GEOLOGY, THURS.PM,G104</td>
</tr>
<tr>
<td>Melosh H.J.</td>
<td>CARBONACEOUS CHONDrites: INCLUSIONS & MATRIX, MON.AM,GYM</td>
</tr>
<tr>
<td>Melosh H.J.</td>
<td>NUCLEOSYNTHESIS: ISOTOPE ANOMALIES, TUES.PM,GYM</td>
</tr>
<tr>
<td>Metzger A.E.</td>
<td>EXTINCT-NUCLEI CHRONOLOGY; PRIMITIVE COMP., WED.PM,G206</td>
</tr>
<tr>
<td>Metzler K.</td>
<td>SYMPOSIUM: LUNAR GEOSCIENCE OBSERVER (LGO), TUES.AM,G104</td>
</tr>
<tr>
<td>Metzler-Ferling A.</td>
<td>LUNAR MARE BASALTS AND GEOLOGY, THURS.PM,G104</td>
</tr>
<tr>
<td>Middleton R.</td>
<td>LUNAR MARE BASALTS AND GEOLOGY, THURS.PM,G104</td>
</tr>
<tr>
<td>Midglofsa L.F.</td>
<td>COSMIC RAYS, THURS.PM,G206</td>
</tr>
<tr>
<td>Ming T.</td>
<td>UREILITES & IRON METEORITES, THURS.PM,G206</td>
</tr>
<tr>
<td>Misawa K.</td>
<td>EXTINCT-NUCLEI CHRONOLOGY; PRIMITIVE COMP., WED.PM,G206</td>
</tr>
<tr>
<td>Mittlefehldt D.W.</td>
<td>THE OUTER SOLAR SYSTEM, TUES.PM,G206</td>
</tr>
<tr>
<td>Miura Y.</td>
<td>CARBONACEOUS CHONDrites: INCLUSIONS & MATRIX, MON.AM,GYM</td>
</tr>
<tr>
<td>Miyamoto M.</td>
<td>COSMIC DUST, WED.AM,G206</td>
</tr>
<tr>
<td>Mihara T.K.</td>
<td>CARBONACEOUS CHONDrites: INCLUSIONS & MATRIX, MON.AM,GYM</td>
</tr>
<tr>
<td>Mihara T.K.</td>
<td>PLANETARY PHYSICS, FRI.AM,G206</td>
</tr>
<tr>
<td>Mizutani H.</td>
<td>PLANETARY PHYSICS, FRI.AM,G206</td>
</tr>
<tr>
<td>Molini-Velsko C.A.</td>
<td>COSMIC DUST, WED.AM,G206</td>
</tr>
<tr>
<td>Moore H.J.</td>
<td>MARS & OTHER REMOTE SENSING, WED.AM,G104</td>
</tr>
<tr>
<td>Moralev V.M.</td>
<td>LUNAR & ASTEROIDAL REGOLITHS, THURS.AM,G206</td>
</tr>
<tr>
<td>Morgan T.H.</td>
<td>PLANETARY DIFFERENTIATION & CRUSTAL GENESIS, WED.AM,GYM</td>
</tr>
<tr>
<td>Morikawa H.</td>
<td>SYMPOSIUM: LUNAR GEOSCIENCE OBSERVER (LGO), TUES.AM,G104</td>
</tr>
<tr>
<td>Morokuma K.</td>
<td>CARBONACEOUS CHONDrites: INCLUSIONS & MATRIX, MON.AM,GYM</td>
</tr>
<tr>
<td>Morey Z.</td>
<td>MARS & OTHER REMOTE SENSING, WED.AM,G104</td>
</tr>
<tr>
<td>Morris R.V.</td>
<td>LUNAR & ASTEROIDAL REGOLITHS, THURS.AM,G206</td>
</tr>
<tr>
<td>Morgan T.H.</td>
<td>LUNAR & ASTEROIDAL REGOLITHS, THURS.AM,G206</td>
</tr>
<tr>
<td>Morrison D.A.</td>
<td>LUNAR MARE BASALTS AND GEOLOGY, THURS.PM,G104</td>
</tr>
<tr>
<td>Mouchinis-Mark P.J.</td>
<td>MARS & OTHER REMOTE SENSING, WED.AM,G104</td>
</tr>
<tr>
<td>Mouchinis-Mark P.J.</td>
<td>MARS GEOLOGY & GEOMORPHOLOGY, TUES.AM,G206</td>
</tr>
<tr>
<td>Mouchinis-Mark P.J.</td>
<td>MARS GEOLOGY & GEOMORPHOLOGY, TUES.AM,G206</td>
</tr>
<tr>
<td>Mouchinis-Mark P.J.</td>
<td>MARS CHANNELS & VOLATILES, WED.PM,G104</td>
</tr>
</tbody>
</table>
Venus Tectonic Styles, Mon.Am,G104
Planetary Geologic Processes, Fri.Am,G04
Mars Geology & Geomorphology, Tues.Am,G206
The Outer Solar System, Tues.Pm,G206
Ordinary Chondrites, Fri.Am,Gym
Impact Phenomena: Theory & Experimentation, Mon.Pm,G206
Venus Interior, Models & Surface Geochem., Mon.Pm,G04
Planetary Geologic Processes, Fri.Am,G04
Mars Channels & Volatiles, Wed.Pm,G104
Impact Phenomena: Theory & Experimentation, Mon.Pm,G206
Lunar & Asteroidal Regoliths, Thurs.Am,G206
Mars & Other Remote Sensing, Wed.Am,G104
Space Utilization, Mon.Pm,Gym
Carbonaceous Chondrites, Chondrules & Nebula, Mon.Pm,Gym
Planetary Physics, Fri.Am,G206
Lunar Highlands, Thurs.Pm,G104
Lunar Mare Basalts and Geology, Tues.Pm,G104
Venus Tectonic Styles, Mon.Am,G104
Mars Geology & Geomorphology, Tues.Am,G206
The Outer Solar System, Tues.Pm,G206
Carbonaceous Chondrites: Inclusions & Matrix, Mon.Am,Gym
Planetary Differentiation & Crustal Genesis, Wed.Am,Gym
Cosmic Dust, Wed.Am,G206
Halley & Comet Exploration, Tues.Am,Gym
Mars & Other Remote Sensing, Wed.Am,G104
Planetary Differentiation & Crustal Genesis, Wed.Am,Gym
Cosmic Rays, Thurs.Pm,G104

Rossbacher L.A.
Roth L.E.
Roush T.L.
Roush T.L.
Roush T.R.
Rubin A.E.
Runcon S.K.
Rutherford M.J.
Ryder G.
Ryder G.
Rzhiga G.N.
Sagedev R.Z.
Salisbury J.W.
Salpas P.A.
Salpetat P.
Sanko N.
Sartori S.
Satovsky B.L.
Saunders R.S.
Saunders R.S.
Schaber G.G.
Schaber G.G.
Schafer F.J.
Schafer F.J.
Schenk P.M.
Schlutter D.J.
Schmidt O.Yu.
Schmidt R.M.
Schmitt N.H.
Schmitt R.A.
Schmitt R.A.
Schmitt R.A.
Schreiber H.O.
Schroeder J.E.
Schubert G.
Schubert G.
Schukolyukov Yu.A.
Schulte W.
Schultz L.
Schultz P.N.
Schultz P.H.
Schultz P.H.
Schultz R.A.
Schutt J.
Schwarz C.
Schwehm G.
Scott D.H.
Scott E.R.D.
Scott E.R.D.
Semenyuk M.
Sears D.W.G.
LUNAR & ASTEROIDAL REGOLITHS, THURS.AM,G104

See T.H.
PLANETARY PHYSICS, FRI.AM,G206

Segatz M.
MARS GEOLGY & GEOMORPHOLOGY, TUES.AM,G104

Seiffert S.
NUCLEOSYNTHESIS: ISOTOPE ANOMALIES, TUES.PM,GYM

Selivanovskaya T.V.
VENUS INTERIOR, MODELS & SURFACE GEOCHEM., MON.PM,G104

Semeniuk J.A.
THE SOLAR NEBULA & PLANETARY ORIGINS, THURS.AM,GYM

Sempjonova L.F.
VENUS TECTONIC STYLES, MON.AM,G104

Senske D.A.
LUNAR MARE BASALTS AND GEOLOGY, TUES.PM,G104

Settle S.A.
IMPACT PHENOMENA: TERRRESTIAL OBSERVIATIONS, MON.AM,G104

Sharkin O.P.
LUNAR MARE BASALTS AND GEOLOGY, TUES.PM,G104

Sharpton V.L.
VENUS TECTONIC STYLES, MON.AM,G104

Shaw D.
LUNAR MARE BASALTS AND GEOLOGY, TUES.PM,G104

Shevraoks J.
LUNAR MARE BASALTS AND GEOLOGY, TUES.PM,G104

Shchekinov V.V.
LUNAR MARE BASALTS AND GEOLOGY, TUES.PM,G104

Shih C.Y.
SNC METEORITES, THURS.AM,G104

Shih C.Y.
LUNAR HIGHLANDS, THURS.PM,G104

Shih C.Y.
SNC METEORITES, THURS.AM,G104

Shipp R.
EXTINCT-NUCLIOE CHRONOLOGY; PRIMITIVE COMP., WED.PM,G206

Shkuratov Y.G.
CARBONACEOUS CHONDRITES, INCLUSIONS & MATRIX, MON.AM,G104

Shkuratov Yu.G.
VENUS INTERIOR, MODELS & SURFACE GEOCHEM., MON.PM,G104

Shoemaker E.M.
ASTEROIDS & COMETS, THURS.PM,GYM

Shoemaker E.M.
VENUS TECTONIC STYLES, MON.AM,G104

Shuvalova I.A.
IMPACT PHENOMENA: TERRRESTIAL OBSERVIATIONS, MON.AM,G104

Shukolyukov Yu.A.
EXTINCT-NUCLIOE CHRONOLOGY; PRIMITIVE COMP., WED.PM,G206

Shukolyukov Yu.A.
CARBONACEOUS CHONDRITES, INCLUSIONS & MATRIX, MON.AM,G104

Shuang F.
PLANTARY PHYSICS, FRI.AM,G206

Slipen V.
LUNAR & ASTEROIDAL REGOLITHS, THURS.AM,G104

Singer P.
DATA SYSTEMS SESSION, POSTER DISPLAYS

Simmons K.
LUNAR MARE BASALTS AND GEOLOGY, TUES.PM,G104

Simon S.B.
LUNAR HIGHLANDS, THURS.PM,G104

Simon S.B.
LUNAR & ASTEROIDAL REGOLITHS, THURS.AM,G104

Simonoff G.
COSMIC RAYS, THURS.PM,G206

Simpson C.
PLANETARY DIFFERENTIATION & CRUSTAL GENESIS, WED.AM,GYM

Singer R.B.
MARS & OTHER REMOTE SENSING, WED.AM,G104

Singer R.B.
THE OUTER SOLAR SYSTEM, TUES.PM,G206

Sinton W.
THE OUTER SOLAR SYSTEM, TUES.PM,G206

Skaugset A.
SPACE UTILIZATION, MON.PM,GYM

Shinner S.
MARS GEOLGY & GEOMORPHOLOGY, TUES.AM,G104

Skobeleva T.P.
PLANETARY GEOLGIC PROCESSES, FRI.AM,G104

Skrinik A.Y.
ORDINARY CHONDRITES, FRI.AM,GYM

Skrinik A.Y.
EUCRITES & ASSOCIATES, WED.PM,GYM

Slade M.A.
VENUS INTERIOR, MODELS & SURFACE GEOCHEM., MON.PM,G104

Slattery W.L.
THE SOLAR NEBULA & PLANETARY ORIGINS, THURS.AM,GYM

Smith A.
SPACE UTILIZATION, MON.PM,GYM

Smith J.V.
ORDINARY CHONDRITES, FRI.AM,GYM

Smith J.V.
EUCRITES & ASSOCIATES, WED.PM,GYM

Smith N.O.
MARS & OTHER REMOTE SENSING, WED.AM,G104

Smrekar S.
SNC METEORITES, THURS.AM,G104

Solberg T.C.
CARBONACEOUS CHONDRITES, INCLUSIONS & MATRIX, MON.AM,GYM

Solomon S.C.
VENUS INTERIOR, MODELS & SURFACE GEOCHEM., MON.PM,G104

Spatia D.
THE SOLAR NEBULA & PLANETARY ORIGINS, THURS.AM,GYM

Spickett B.
COSMIC RAYS, THURS.PM,G206

Spivack R.A.
COSMIC RAYS, THURS.PM,G206

Spohn T.
PLANETARY PHYSICS, FRI.AM,G206

Spudis P.D.
MARS GEOLOGY & GEOMORPHOLOGY, TUES.AM,G206

Spudis P.D.
THE OUTER SOLAR SYSTEM, TUES.PM,G206

Spurrier S.W.
PLANETARY DIFFERENTIATION & CRUSTAL GENESIS, WED.AM,GYM

Stakheeva S.A.
ASTEROIDS & COMETS, THURS.PM,GYM

Stakeeva S.A.
CARBONACEOUS CHONDRITES, INCLUSIONS & MATRIX, MON.AM,GYM

Steel E.
LUNAR MARE BASALTS AND GEOLOGY, TUES.PM,G104

Steele A.
ORDINARY CHONDRITES, FRI.AM,GYM

Steele A.M.
LUNAR MARE BASALTS AND GEOLOGY, TUES.PM,G104

Steinbacher R.H.
LUNAR MARE BASALTS AND GEOLOGY, TUES.PM,G104

Stephan T.
LUNAR & ASTEROIDAL REGOLITHS, THURS.AM,G104

Stephenson A.
LUNAR MARE BASALTS AND GEOLOGY, TUES.PM,G104

Stephenson L.O.
LUNAR MARE BASALTS AND GEOLOGY, TUES.PM,G104

Stern S.A.
LUNAR MARE BASALTS AND GEOLOGY, TUES.PM,G104

Stern S.A.
LUNAR MARE BASALTS AND GEOLOGY, TUES.PM,G104

Suitor J.W.
LUNAR MARE BASALTS AND GEOLOGY, TUES.PM,G104

Suitor J.W.
LUNAR MARE BASALTS AND GEOLOGY, TUES.PM,G104

Sutton S.R.
LUNAR & ASTEROIDAL REGOLITHS, THURS.AM,G206

Sutton S.R.
VENUS TECTONIC STYLES, MON.AM,G104

Sutton S.R.
THE OUTER SOLAR SYSTEM, TUES.PM,G206

Sutton S.R.
PLANTARY PHYSICS, FRI.AM,G206

Sutton S.R.
THE OUTER SOLAR SYSTEM, TUES.PM,G206

Sutton S.R.
LUNAR MARE BASALTS AND GEOLOGY, TUES.PM,G104

Sutton S.R.
LUNAR MARE BASALTS AND GEOLOGY, TUES.PM,G104
PROGRAM NOTES
ORDER FORM

Lunar and Planetary Science
ABSTRACTS of the Conference

To obtain abstracts enclose payment (checks made out to LPI Order Dept.); Government agency employees may send addressed franked label in lieu of payment. Mail with this form to:

ORDER DEPARTMENT

Foreign requests please have checks in U.S. currency drawn on U.S. banks. If checks drawn on foreign banks, add $10.00 for collection fee.

<table>
<thead>
<tr>
<th>No. OF COPIES</th>
<th></th>
<th></th>
<th>COST/ TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>XVI 1985</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XVII 1986</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XVIII 1987</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(New)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mailed to anywhere in the United States</td>
<td></td>
<td>$5.00</td>
<td></td>
</tr>
<tr>
<td>Mailed AIR BOOK RATE to: Mexico, Canada</td>
<td></td>
<td>14.00</td>
<td></td>
</tr>
<tr>
<td>Mailed AIR BOOK RATE to: Central America, Columbia, Caribbean Islands, Venezuela, Bahamas, Bermuda, St. Pierre, and Miquelon</td>
<td></td>
<td>23.00</td>
<td></td>
</tr>
<tr>
<td>Mailed AIR BOOK RATE to: South America (except Colombia & Venezuela), Europe (except Estonia, Latvia, Lithuania, USSR), and North Africa (Morocco, Algeria, Tunisia, Libya and Egypt)</td>
<td></td>
<td>37.00</td>
<td></td>
</tr>
<tr>
<td>Mailed AIR BOOK RATE to: Estonia, Latvia, Lithuania, USSR, Asia, Pacific Ocean Islands, Africa (other than North Africa), the Indian Ocean Islands, and the Middle East</td>
<td></td>
<td>51.00</td>
<td></td>
</tr>
<tr>
<td>Mailed SURFACE BOOK RATE to: All foreign countries</td>
<td></td>
<td>8.00</td>
<td></td>
</tr>
<tr>
<td>TOTAL AMOUNT ENCLOSED</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All prices subject to change</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>These prices effective 2/15/87</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NAME:

ADDRESS:

Please print or write legibly. This is your mailing label.
CONTENTS

LUNAR & PLANETARY SCIENCE CONFERENCE XVIII
New Publisher - 18th Proceedings
NASA & STScI Develop Planetarium Project
NASA, Marietta Begin Magellan Assembly Tests
COBE To Be Launched From Delta Rocket
NASA Balloon Flights
New Publications
LPI Offers New Slide Set
LPI Announces South India Field Workshop
Calendar
Lunar and Planetary Bibliography
ORDER FORM - LPI PUBLICATIONS, REPORTS, SLIDE SETS

PRELIMINARY LPSC XVIII PROGRAM
Program APPENDIX
Speaker Index APPENDIX
Author Index APPENDIX
ORDER FORM - LPSC XVIII (Abstracts of the CONFERENCE)

Universities Space Research Association
LUNAR AND PLANETARY INSTITUTE
3303 NASA Road One
Houston, TX 77058-4399

ADDRESS CORRECTION REQUESTED

DATED MATERIAL - PLEASE DISTRIBUTE