The TWENTIETH LUNAR AND PLANETARY SCIENCE CONFERENCE will begin Sunday March 12 at 6:00 p.m. with registration and an open house at the Lunar and Planetary Institute. The pre-registration fee for the conference is $40.00 for all attendees except students with student ID's who may register for $20.00; there will be a late fee of $10.00 assessed for all registrations received after March 6, including those received during the conference. A shuttle bus will run between NASA area hotels and the LPI from 5:45-10:00 p.m. Registration will continue throughout the conference on the 2nd floor of the Gilruth Center at the Johnson Space Center. All conference activities, technical sessions, exhibits, poster sessions, etc., unless otherwise listed, will be at the Gilruth Center.

From a total of 643 abstracts accepted for publication in Lunar and Planetary Science XX, the Program Committee has constructed 28 technical sessions and 1 special session. The general structure of the program is as follows:

MONDAY AM, MARCH 13
• Mars Remote Sensing
• Chondrules and Ordinary Chondrites
• Cosmic Dust I

MONDAY PM, MARCH 13
• Mars Remote Sensing/Volcanism
• Carbonaceous Chondrites
• Shock Metamorphism and Terrestrial Craters
• Planetary Differentiation
 (Bldg. 30 auditorium)

TUESDAY AM, MARCH 14
• Mars Geology
• Bholghati and Angrite Consortia
 Plus Pallasites
• Cosmic Dust II and Interstellar Grains/Dust

TUESDAY PM, MARCH 14
• Mars: Water, Canyons, and Life
• Ureilites, Ungrouped Chondrites and Nebular Processes
• Lunar Geology, Processes and Resources

TUESDAY EVENING, MARCH 14
• NASA Opportunities in Solar System Exploration
 (Bldg. 2 auditorium)

WEDNESDAY AM, MARCH 15
• Venus Geophysics
• CAIs
• Nature and Effects of Impact cratering

WEDNESDAY PM, MARCH 15,
SPECIAL SESSION
• 20th Anniversary Plenary Review
 (Bldg. 2 auditorium)

THURSDAY AM, MARCH 16
• Venus Geology
• SNCs, HEDs, and Fellow Travelers
• Regolith and Cosmic Rays

THURSDAY PM, MARCH 16
• Origin and Crystallization of Mare Basalts and Asteroids and Small Bodies
• Chemical and Isotopic Characteristics of Solar System Material
• Planetary Physics

FRIDAY AM, MARCH 17
• Magma Evolution in the Lunar Highlands
• Planetary Accretion
• Outer Solar System

The preliminary program included in this issue reflects plans for the conference as they exist early in February. Minor changes may yet occur before the Conference itself (see Appendix to this Bulletin)
Conference Highlights and Peripheral Meetings

Posters entered in the Technical Poster Session will be highlighted Monday, Tuesday, and Thursday of the Conference in the Gilruth Center. Approximately 30 posters will be displayed each day. Authors will be available for discussion from 5:00-6:30 p.m. on these days, during which time complimentary keg beer and soft drinks will be served.

The on-line and remote access capabilities of the interrelated database systems in use at the LPI will be displayed in the coffee area of the Gilruth center during regular conference hours. These databases include the Geophysical Data Facility (GDF) and the Bibliographic Search Service (BSS) developed and maintained by the LPI, as well as the Image Retrieval and Processing System (IRPS) sponsored by Washington University, which includes the Planetary Image and Cartography System (PICS) created by USGS Staff.

The Combined Publishers Exhibit will be on display in the coffee area of the Gilruth Center from Monday through Friday noon. Several publishers have already indicated an intent to participate, including Annual Reviews, Inc., American Geophysical Union, Springer-Verlag, Taylor & Francis, Macmillan Trade Books, and The University of Arizona Press.

Tuesday — March 14
There will be an evening session held in the Bldg. 2 auditorium entitled “NASA Opportunities in Solar System Exploration.”

Wednesday — March 15
A JSC Astronomer’s Brownbag Lunch Club seminar will be held in the Conference Room (Room 193) of Building 31 at noon. Jim Oberg will be presenting a talk entitled “Soviet Shuttle Update.”

The Planetary Meetings Steering Committee (PMSC) will hold a meeting at noon in the Blue Room of the LPI. Members of the committee should contact Pam Jones, LPI Projects Office, at 713-486-2150 for additional information.

There will be a banquet held this year at the South Shore Harbour Hotel and Conference Center. Tickets for the banquet are $25 or $15 for students. The speaker will be George Mueller, who was the Associate Administrator for Manned Space Flight at NASA Headquarters during the Apollo era. The banquet begins at 7:00 and a cash bar will be open starting at 6:00. Shuttle service will be provided from the other area hotels to the South Shore Harbour Hotel.

Thursday — March 16
The Lunar and Planetary Science Conference Forum convened by the PMSC will be held at noon in Room 104 of the Gilruth Center. The Forum provides a session where conference participants can openly express and discuss mutual concerns.

Suggestions for topics to be discussed before the Forum are solicited. Questions, comments, and suggestions should be sent to the LPI Projects Office, so that they can be included in the summary and agenda for the Forum.

The Planetary Society, in cooperation with NASA, is sponsoring a symposium entitled “Current Questions on Planetary Exploration.” This event will be held from 8 to 10 p.m. in the Building 2 auditorium. The panelists will include Louis Friedman, James W. Head, Michael B. Duke, Valery Barsukov, Mikhail Marov, and Lev Mukhin. Attendance is free, but tickets must be obtained beforehand from the Planetary Society. To obtain tickets, please write to the Planetary Society, Re: Houston Event, 65 N. Catalina Ave., Pasadena, CA 91106 or call 818-793-5100.

Abstracts

Lunar and Planetary Science XX
A staple-bound copy of abstracts will be sent before the conference to the corresponding author of an abstract. No copies will be sent to foreign authors this year unless the author has prepaid for the cost of shipping. Due to time constraints in our printing schedule and to budgetary constraints on postage, a limited number of copies to the same institution will be mailed. It is suggested that these copies be shared among the author’s colleagues.

Abstract volumes will be distributed to all conference attendees. For those who cannot attend the conference but wish to have the abstracts, a supply will be available after the conference at the cost of shipping and handling. Refer to the order form included in this Bulletin and mail with payment to the LPI Order Department.

On-line 20th LPSC Program

To access the online program, use either the NASA/SPAN network, NASA NPSS (NASA Packet Switching System) access, or dial in direct. When using NASA/SPAN, the node name for the LPI VAX is LPI:. Direct dial phone lines are 713-486-8214 or 713-486-9782.

When connection is made, use the following directions:

- **USERNAME**: Program
- **PASSWORD**: LPI

You will then get the usual “welcome” to the system and a menu of options will be displayed.

20TH LPSC PROGRAM ONLINE
Select the routine you wish to use by entering its letter below

A. **AUTHOR/SPEAKER NAME**
B. **SESSION**
C. **TOPIC (TITLE KEYWORDS)**
G. **QUIT (EXIT ROUTINE)**

A series of menus and prompts will cue you to the appropriate way to access the various aspects of the program. We hope this innovative way of presenting the program to the community almost at the same time it is formed will assist you in planning your travel arrangements and other appointments that you may wish to make.

If you have difficulty in accessing the LPI computer, please contact Kinpong Leung, LPI Computer Systems Manager, at 713-486-2165, [KLEUNG@NASA] (on NASA/MAIL), or LPI::LEUNG (on SPAN).

The LUNAR AND PLANETARY INFORMATION BULLETIN is published three times a year by the Lunar and Planetary Institute, 3303 NASA Road One, Houston, Texas, 77058-4399.

Ivan Warranuss, Editor.

Editorial and production support were provided by the Publications Services Department at the LPI.

Copy deadline for the May issue of the Bulletin is April 17, 1989. Send information of announcements to be included to the LPI Publications Office, 1303 NASA Road One, Houston, TX 77058-4399.
The Proceedings of the Nineteenth Lunar and Planetary Science Conference is a volume of papers including original research and reviews of current interest in the planetary sciences. This book incorporates, but is not limited to, material from the Nineteenth Lunar and Planetary Science Conference held at the NASA Johnson Space Center, Houston, Texas, in March 1988. The LPSC has been convened annually since 1970, and is one of the most important forums for research in planetary science. It thus represents a broad spectrum of disciplines and interests.

This year’s Proceedings are edited by Dr. Graham Ryder and Dr. Virgil L. Sharpton. Topics range from plans to build an inhabited lunar base, to tectonic processes on Venus, to the geochemical distinctions between the Earth and the Moon and how they might be used to determine the origin of the Moon, to the effect of impact events on the Earth. The volume also contains papers on meteorites, comets, cosmic dust, solar system geochemistry, geology and petrology of the Moon and other planets, and a large section on impact cratering studies. The Proceedings are considered a prestigious publication, and the papers comprising it are reviewed with the rigor of an academic journal.

This volume should be of interest to researchers and their graduate students in all lunar and planetary programs, particularly workers in petrology, geochemistry, geophysics, geology, and astronomy.

Proceedings of the Nineteenth Lunar and Planetary Science Conference
Edited by Lunar and Planetary Institute/
Graham Ryder and Virgil L. Sharpton
ISBN 0 521-37409-X 784 pages
$100 /£65
Publication date: March 1989

Also available:
Proceedings of the Eighteenth Lunar and Planetary Science Conference
Edited by Lunar and Planetary Institute/
Graham Ryder
ISBN 0 521-35090-5 753 pages
$65 /£60
Published: March 1988

These books may be ordered from Cambridge University Press, Order Department, 510 North Avenue, New Rochelle, NY 10801 (Phone: 800-872-7423 or 914-235-0300). Outside of North America, please order from Cambridge University Press, Customer Services Department, Edinburgh Building, Shaftesbury Road, Cambridge CB2 2RU, U.K. (Phone: 223 312393).

USRA Establishes New Initiatives Office

At the recently held Universities Space Research Association (USRA) Strategic Development retreat it became clear that a need exists for heightened public awareness of USRA and its national research centers. Partially in response to this situation, USRA has established a New Initiatives Office to be housed at the Lunar and Planetary Institute. To head this new office, Nancy Wood, former executive director of The Space Foundation, has been appointed to the post of Special Assistant to the President of USRA. One of her first responsibilities will be to enhance and expand the research capabilities of the USRA facilities in Houston, which include the LPI, the Division of Space Biomedicine, and the Universities Advanced Design Program. Ms. Wood comes to this position with a long history of interest in and involvement with the space program and related activities. For eight years she has directed the Space Business Roundtable and the fellowship programs of The Space Foundation. She serves on the executive committee of the 1000-member Houston Chapter of American Institute of Aeronautics and Astronautics. Her professional affiliations include Fellow of the British Interplanetary Society and Associate Fellow of AIAA, and membership in Women in Aerospace, American Astronautical Society, Planetary Society, and the Astronomical Society of the Pacific.

Wood will be ably assisted by the new Executive Secretary to the New Initiatives Office, Joan Wade, who brings a unique background to this position. Wade was formerly Executive Secretary to the Director of Research and Development and the Vice President of Engineering and Technology of Vetco Gray, Inc. In addition, she has a professional background in government, as City Councilwoman of Nassau Bay for five years, Congressional Aide to a U.S. Senator, and office manager to a U.S. Representative. Her professional competence combines with an understanding of the requirements of international space research to make her a welcome addition to the USRA space research support staff.

The latest addition to the New Initiatives program is Beth Williams, who has been appointed by the LPI as Consultant to the Director’s Office. Williams, who was married to the late astronaut C. C. Williams, has been an area resident for 25 years. Her function is to assist the LPI Director and the New Initiatives Office in developing local education programs and related tasks and increasing public awareness of the LPI as a whole. Her knowledge of the area as well as her wide-ranging circle of acquaintances serve to make her an excellent choice for this task.

Anyone desiring further information regarding the New Initiatives Office should contact Nancy Wood at 713-486-2196 or the LPI Director’s Office at 713-486-2180.
Microsymposium 9

The ninth in a series of small symposia organized under the auspices of the Brown University-V. I. Vernadsky Institute (ASUSSR) institution-to-institution agreement, and including representatives from the Institute of Space Research (IKI) and several other institutions of the Soviet Academy of Sciences, will be held at Brown University, March 20-22, 1989. The meeting is entitled “Recent Scientific Results and Future Plans in the Exploration of the Solar System (Microsymposium 9)” and the co-conveners are V. L. Barsukov and James W. Head. Topics will include:

Venus Volcanism: Processes and Deposits

Volcanism is clearly an important process on Venus, but how does it manifest itself, what is its contribution to heat loss, what are the rates of volcanism today, what are the implications of volcanism for geochemical cycles of volatiles, and where does Venus display presently active volcanism?

Venus Tectonics and Interior Dynamics

Data from Venera 15/16 and other sources revealed a wide variety of tectonic deformation, and previous discussions have focused on several possible mechanisms for interior dynamics and surface deformation (hot spots, spreading, conduction, convection, etc.). In this session, attention will be focused on the nature of surface deformation and how it may be linked to the nature and dynamics of the interior of Venus.

Venus Science: A Pre-Magellan View

Magellan will be launched in April 1989 and will begin returning data in 1990. The purpose of this discussion session is to outline the significant questions that the global high-resolution data from Magellan will help resolve. Emphasis will be placed on what we have learned from Venera, Pioneer-Venus, Arecibo/Goldstone, and other data, and how the analysis of these data have focused our attention on specific problems to be tested by Magellan Mission results.

Scientific Problems and Objectives for Lunar Exploration

The Moon is the cornerstone for our understanding of processes in the early history of the solar system. Scientific attention is again focusing on the Moon with Galileo encounters in 1990 and 1992, and interest on the part of the U.S.S.R. and the U.S. in missions to the Moon in the 1990s. This session will focus on recent data and scientific questions for future missions.

Nature, Origin, and Evolution of Phobos: The Pre-Encounter View

The Phobos Mission will encounter Phobos this spring, and this session will offer an opportunity to summarize existing knowledge about Phobos and to discuss the important questions that the mission will help resolve. Several Soviet and French investigators and Phobos IDSs will participate.

Mars Stratigraphy, History, and Science Objectives for Future Exploration

The recent opposition of Mars and the Phobos Mission offer new regional data for the surface of Mars. This session will emphasize recent scientific results and the scientific questions associated with future Mars exploration, including possible sample return missions. The theme of this session will be the stratigraphy of Mars, the history of reservoirs of fine-grained material and volatiles, the important scientific questions relating to the major stages in the atmospheric and geologic evolution of Mars, and recent Soviet thinking on the biological evolution of Mars.

For more information on this meeting, please contact Jim Head at 401-863-2526 or Angel Hilliard at 401-863-2436.

Lunar Polar Probe Conference Scheduled Prior to LPSC

The Houston Space Society is planning the Lunar Polar Probe Conference to be held in Houston on March 11 and 12, the two days immediately preceding the 20th LPSC. The conference is intended to formalize plans for the development, funding, and launch of a small satellite to explore the polar regions of the Moon. The weekend conference will be held at the Nassau Bay Hilton, located across the street from the LPI and the Johnson Space Center. Attendance is open to members of the general public with an interest in space, and the registration fee is $15. A banquet will be held on Saturday, March 11, and the cost for attending is $25 per person. Guest speakers at the conference will include Dr. Wendell Mendell of the NASA Johnson Space Center. General information will be discussed in a series of panels on Saturday followed by workshop sessions and a press conference on Sunday. More information on the conference may be obtained from Howard Stringer (713-783-1181) or James Davidson (713-643-6373), or by writing the Houston Space Society at P.O. Box 266151, Houston, TX 77207-6151.

International Congress to Draw Top Earth Scientists to U.S.

An international gathering of over 6000 earth scientists will convene in Washington, D.C., during July 1989 for the prestigious 28th International Geological Congress. The IGC provides a forum for the world's foremost geoscientists to present state-of-the-art findings and exchange ideas on topics ranging from research on earthquakes and volcanoes to the recovery of oil and water.

The last IGC was held in 1984 in Moscow and previously in 1980 in Paris, the site of the first IGC in 1878. The July 9-14 meeting at the Washington Convention Center marks only the third time in its history that the United States will host the meeting. The last U.S. meeting of the IGC was in 1933.

The attendees will include earth scientists and researchers from the energy and minerals exploration industry, federal agencies, geological survey, and academic institutions. The scientific credentials of the Congress are underscored by more than 3000 oral presentations, over 100 pre- and post-Congress field trips to explore geology from Antarctica to Alaska, and more than 50 short courses and workshops.

Two major colloquia will highlight the 20th anniversary of the Apollo 11 lunar landing and provide an assessment of world natural resources. Other symposium sessions will include the latest research on the influence of extraterrestrial impact phenomena on the course of geologic history, including the death of the dinosaurs and other species; new tools and frontiers in the exploration for oil and gas; energy and mineral resources of the Circum-Pacific region; advances in earthquake prediction; hydrogeology; and rate and frequency of volcanic eruptions.

Hosts for the IGC, held in collaboration and under sponsorship of the International Union of Geological Sciences, are the U.S. Geological Survey and the U.S. National Academy of Sciences, working in cooperation with major U.S. earth science societies and industry organizations on behalf of the entire U.S. earth science community.

For further information contact:

Dr. Bruce Hanshaw
Secretary General
28th IGC
P.O. Box 1001
Herndon, VA 22070-1001
703-648-6053
Venus Geoscience Tutorials and Workshops

The NASA PGG Program and Magellan Project has encouraged the organization of several LPI-sponsored tutorials and/or workshops on Venus geoscience to take place between the spring of 1989 and the start of Venus mapping by Magellan, which is scheduled for July 1990. The major objectives of these tutorials and workshops will be to (1) summarize for the planetary geoscience community the rapidly evolving state of our knowledge of the surface and geology/ geophysics of Venus, (2) prepare the community for the extremely large Venus geoscience “data dump” expected from Magellan, and (3) discuss mapping standards and provide early training in “radar geology” mapping in support of NASA’s formal Venus Geologic Mapping Program, to begin after the Magellan mission in the early 1990s.

Joseph Boyce, NASA Program Scientist Planetary Geosciences, has asked Gerald G. Schaber of the U.S. Geological Survey in Flagstaff to supervise the planning and organization of the first Venus Geoscience Tutorial (and associated Venus Geologic Mapping Workshop) to be held June 12-15, 1989 at the U.S.G.S. Field Center in Flagstaff, Arizona. A first announcement regarding the Venus tutorial and mapping workshop has already been mailed. Anyone desiring a copy of this announcement or to be added to the mailing list should contact Pam Jones at the LPI (713-486-2150). For additional information, contact Pam Jones or Gerry Schaber (602-257-7485; FTS 765-7485).

Change in Meeting Location

The conference on “The Sun in Time” is to be held in Tucson, Arizona, March 6-10, 1989, the week before the Lunar and Planetary Science Conference. Please note that this conference was originally scheduled to be held in Monterey, California, but due to administrative difficulties it was necessary to move it to Tucson. The new location of the conference is the Tucson Hilton East, 7600 E. Broadway. For further information, please contact Mildred S. Matthews, University of Arizona, at 602-621-2902.

Publications

Engineering, Construction and Operations in Space

Edited by Stewart W. Johnson and John P. Wetzel

A new book relating to space activities and lunar bases has been published by the American Society of Civil Engineers. This volume, the Proceedings of the Space 88 Conference held in Albuquerque, New Mexico, contains 125 papers providing in-depth discussions of space policy, extraterrestrial basing, space stations and orbiting structures, lunar surface construction and operations, lunar base design, martian basing, space environmental effects, role of space station technology, and other areas of special interest. To obtain a copy, write to

American Society of Civil Engineers
345 East 47th Street
New York, NY 10017
212-705-7538

Library of Congress Catalog Card
No. 88-21760
ISBN 0-97262-671-7
1988, 1349 pages, softcover, $98 U.S.

Science for Children: Resources for Teachers

This new publication is a guide designed to assist those who are working to improve elementary science education. The materials described here are recommended because they provide outstanding support for carrying out effective hands-on, inquiry-based programs. Science for Children has been prepared by the National Science Resources Center, a joint effort of the National Academy of Sciences and the Smithsonian Institution.

The guide is divided into three major sections: Curriculum Materials, Supplementary Resources, and Sources of Information and Assistance. A brief description of each item is included along with the address, phone contact, scope of the material, and price. It is divided by subject and contains several indexes to allow access to the information in a number of ways.

This guide should be available to every elementary teacher who is introducing science into the curriculum for the first time or to the experienced science teacher who is looking for new ideas and materials, as the guide can save a lot of time and effort in locating materials and evaluating them.

The 176-page guide is available from:

National Academy of Sciences Press
2102 Constitution Avenue N.W.
Washington DC 20007-5575

The price is $7.95 for a single copy, $6.50 for 2 to 9 copies, and $4.95 for 10 or more copies; VISA / Mastercard / American Express is accepted.

LPIB No. 52
The National Space Society, a nonprofit organization that actively promotes space exploration, will publish a new monthly space magazine beginning in January 1989 entitled *Ad Astra*, which is Latin for “To The Stars.” Editorial topics planned for *Ad Astra* during 1989 include articles on Space Station "Freedom," updates on shuttle missions, Mars exploration, the politics of space, superconductivity in space, commercial space, international programs, life sciences, remote sensing, space probes and satellites, spinoffs, missions of tomorrow, and interviews, plus all the latest activities of the National Space Society.

Subscriptions to *Ad Astra* are available for $30 per year, and are a benefit of membership in the National Space Society.

Students and senior citizens receive a special subscription rate of $18, and the rate for educators is $20. Advertising will be accepted and media kits are available upon request.

The National Space Society, founded by a merger between the National Space Institute and the L5 Society, is one of the foremost civilian space advocacy groups in the world. Headquartered in Washington, D.C., the National Space Society has more than 20,000 members and 100 chapters worldwide. For more information, contact:

Kate McMains, Managing Editor
National Space Society
922 Pennsylvania Ave., S.E.
Washington, DC 20003
202-543-3991

New Materials Available from A.S.P.

Catalog of Education Materials

A new catalog from the nonprofit Astronomical Society of the Pacific features interesting materials about the exploration of the universe. It includes slide sets, a laser disk, and videotapes with the latest images from the world’s largest telescopes and U.S. and Soviet space probes. Also featured are software packages for various home computers that can show the night sky in any orientation and simulate some of the techniques and principles of space flight. Posters, observing aids, audiotapes, and books to help youngsters learn about astronomy round out the 32-page catalog. To obtain a copy, please write to:

Catalog Requests
A.S.P.
390 Ashton Ave.
San Francisco, CA 94112

The Society would be grateful if you can include two first class stamps to help with the mailing costs.

Moon Kit

A new kit of slides and information about the Moon has been released by A.S.P. The 18 slides in the kit show many different aspects of the Moon, including close-ups of dramatic craters, lava tubes, and mountains, as well as a map of the far side of the Moon and photos from the Apollo 11 landing. The slides are accompanied by a 24-page book with detailed captions, background information, projects, activities, and an introductory reading list. Among the topics covered in the book are a guide to the phases of the Moon, explanations of the names of full moons (including “blue moon” and “harvest moon”), and a description of what it is like on the lunar surface. The booklet also has tables of the automated and manned lunar probes and a chart for telling time by the Moon.

The kit is ideal for teachers, students, and anyone interested in getting to know our planet’s satellite more intimately. To order, send $24.45 (which includes postage and handling) to:

A.S.P.
Moon Kit Dept. NPK
390 Ashton Ave.
San Francisco, CA 94112

California residents should add sales tax. Orders from outside the U.S. should include $3.00 for additional postage.

More Volumes Published in Isaac Asimov’s Library of the Universe

When the first volume of Isaac Asimov’s Library of the Universe series was reviewed in this Bulletin in February 1988, we were very pleased with the excellence of the book. Now that 16 volumes of the series have been published, it is obvious that the quality of the series will be maintained throughout the entire 32-volume sequence.

Publisher Gareth Stevens, Inc., working with Dr. Asimov, has selected a wide spectrum of astronomical time, events, and phenomena ranging from ancient astronomy to a book for the sun and each planet in our solar system, to quasars and black holes, space garbage, rockets and satellites, to UFOs, to future homes for human beings in space.

The authors have worked with various space organizations to acquire powerful, instructive and beautiful imagery to create clear, elucidative illustrations for each book in the series. Each volume contains Asimov’s special contribution of “Amazing Facts” and “Unexplained Mysteries,” which are both provocative and fun. A “Fact File” is included in the back matter of each book along with a glossary, guide for further reading, and, for children who wish to learn more, places to visit and write. An index appears in each book and Volume 33 will be a comprehensive index for the entire series.

The books are designated for Grades 3-4 but should be of interest to children whose ages range from 6-12. Asimov writes in a friendly and insightful way that presents the science facts and concepts in simple, thoughtful language.

The latest volumes in the set (volumes 11-16) include *Ancient Astronomy, How was the Universe Born?, Space Spotter’s Guide, Earth: Our Home Base, Saturn: The Ringed Beauty,* and *Unidentified Flying Objects.* Each of the books is priced at $9.95 and is library bound and cotton drill reinforced.

To order or request more information on this much needed series of books for the elementary science student, contact:

Gareth Stevens, Inc.
7221 West Green Tree Road
Milwaukee, WI 53223
414-466-7550

Fran Waranius

San Francisco, CA 94112
ORDER FORM

Lunar and Planetary Science

ABSTRACTS of the Conference

Prepayment (in $US) required on all foreign orders.

To obtain abstracts **enclose payment** in U.S. dollars only (checks made out to LPI Order Dept.)

ORDER DEPARTMENT
LUNAR AND PLANETARY INSTITUTE
3303 NASA ROAD ONE
HOUSTON TX 77058-4399

<table>
<thead>
<tr>
<th>No OF COPIES</th>
<th>XVIII 1987</th>
<th>XIX 1988</th>
<th>XX 1989 (New)</th>
<th>COST/COPY</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Mailed to anywhere in the United States</td>
<td>$7.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Mailed AIR BOOK RATE to:</td>
<td>18.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Mexico, Canada</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Mailed AIR BOOK RATE to:</td>
<td>32.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Central America, Columbia, Caribbean Islands, Venezuela, Bahamas, Bermuda, St. Pierre, and Miquelon</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Mailed AIR BOOK RATE to:</td>
<td>53.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>South America (except Colombia & Venezuela), Europe (except Estonia, Latvia, Lithuania, USSR), and North Africa (Morocco, Algeria, Tunisia, Libya and Egypt)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Mailed AIR BOOK RATE to:</td>
<td>73.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Estonia, Latvia, Lithuania, USSR, Asia, Pacific Ocean Islands, Africa (other than North Africa), the Indian Ocean Islands, and the Middle East</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Mailed SURFACE BOOK RATE to:</td>
<td>11.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>All foreign countries</td>
<td></td>
</tr>
</tbody>
</table>

TOTAL AMOUNT ENCLOSED

All prices subject to change

These prices effective 2/15/89

NAME: ________________________________

ADDRESS: ________________________________

__

__

__

__

__

Please print or write legibly. This is your mailing label.
LPI Library Information Center (LIC) Computer Accounts

There are two LPI Library Information Center datasets available on-line. These are:

Username: PATRON or Username: SEARCH
Password (to either): LPI

PATRON contains the on-line card catalog, journals holdings, new arrivals, and a message facility for library users.
SEARCH contains the Lunar and Planetary Bibliography, which has approximately 25,000 references to the lunar and planetary literature (only the Moon prior to 1978).

TO ACCESS:
DIRECT DIAL: 713-486-9782 or 8214. This connection to the LPI VAX will give you the prompt Username. Enter PATRON or SEARCH as appropriate. Password on either account is LPI.

NASA/SPAN: SET HOST LPI:
Username prompts same as above.
OMNET (SEARCH SERVICE ONLY):
GOTO XDATA
One Moment please... Welcome to XDATA
Connect me to: LPI/BSS
AFTER CONNECTING TO SEARCH:
A message will appear identifying the search service, giving you the choice to select a number of news items and ask
DO YOU WISH TO CONTINUE (Y OR N)?
A "Y" response will begin the Search program sequence with a prompt for:
ACCOUNT NAME: PASSWORD:
As a beginning user, you may use the general account NEWUSER, password SEARCH. This is NOT a VAX Username prompt.
REMEMBER: At any time you may type the word HELP and you will receive on-line instructions.
Other important considerations—the Boolean operators are:
ampersand (&) to "and" terms together plus sign (+) to "or" terms.
At this point you may NOT combine "and" and "or" in the same search statement. A sample search statement would be entered thus: PHOBOS & DEMIOS

This would result in a population in which both of these terms appear either in titles or in the keywords.
APOLLO 15
APOLLO 16
Would result in a population in which either Apollo 15 or Apollo 16 appeared in the citation.

It is possible to refine your searches by using the date ranging statement. If 99 is typed for the year to begin and also for the year to end, then the next search statement will apply only to the search previously performed. For example:

After obtaining a file of the references with either Apollo 15 or Apollo 16, at the date-ranging feature type in 99 and 99 to both prompts, then submit another search statement i.e.,
15014+
16240
This would result in a search of the Apollo 15/Apollo 16 file for references with either of these two sample numbers.

You can get an idea of the size of the file created if you will say "no" to the prompt "DO YOU WANT CITATIONS PRINTED ON YOUR SCREEN." The computer automatically puts the citations retrieved into a file for you to scan or print out later. By responding "no" you will get a year-by-year accounting of how many references were found as matches to your search statement, and a total number when it is finished. Then to see the references you may use the PRTOUT command and follow the instructions for previewing references on the screen or to your printer.

You may always get a list of the commands available by typing "HELP" or at the command level answer "PROMPTS".

Remember to "quit" when you are finished. For additional help or information call Stephen Tellier at 713-486-2191 or on NASA/SPAN LPI:STEPHEN.

AFTER CONNECTING TO PATRON:
Menus and prompts will direct you to the individual databases in this account. The same Boolean operators are available in Catalog as in SEARCH. At present searching the card catalog is sometimes a lengthy process. There are plans to upgrade soon.

SPAN Holds Last Meeting

The Data Systems Users Working Group (DSUWG) was formed in 1980 to provide guidance to NASA in the management of the Span Physics Analysis Network (SPAN). The most recent meeting of the DSUWG was held in Anaheim, California on October 24-26, 1988. It was attended by approximately 75 scientists and network managers. Ron Zwicki of the NOAA Environmental Research Laboratories chaired the meeting in the office of Daniel Baker's absence.

SPAN administration from the U.S. and Europe gave presentations on SPAN operations. There were presentations on uses of SPAN, including the transfer of NOAA images, access to SIMBAD, use by ocean scientists, access to the National Oceanographic Data Center (NODC), and access to the San Diego Supercomputer Center (SDSC).

One of the major issues addressed at this meeting was the merger of NASA's DECnet (SPAN) and TCP/IP (NSN) network user groups. Several presentations were given by the NSIPO (NASA Science Internet Project Office), and SPAN management together to inform the DSUWG on what the merger involves.

Presentations included the future of science networking for NASA as seen by NASA Headquarters Code E and a report of the results of dual protocol testing. A presentation by the NSIPO on its future plans helped the DSUWG attendees to better understand the relationship between SPAN, NSI, and NSN. The DSUWG's final decision was that the two users groups should merge within the next year.

Details for the implementation of the merger will be worked out by representatives from each group and a new name will be decided upon. The next meeting of this group will be the first joint users group meeting.

Security was another major topic discussed at the DSUWG meeting. Pat Sisson, the SPAN Security Manager, gave a security overview, discussed the procedures for reporting security incidents, mentioned the techniques used to protect the NSSDC computers, and indicated that the NSSDC will develop a security "tool box" that will be useful to other SPAN system managers to protect their systems. She also discussed a new computer security law that affects all government and government-funded computer systems containing sensitive data. The new law requires the managers of the systems to protect their data.
The SPAN management team now includes an Internetworking Manager, who is working on issues such as dual protocol testing, coordination with other wide-area networks, and the migration of SPAN to OSI (the International Standards Organization’s Open System Interconnect). He is also working with others from HEPNET and Digital Equipment Company to develop a coordinated plan for the migration of SPAN and HEPNET to DECnet PHASE V/OSI.

LPI Computer Access from Omnet

Whether you’re in Valparaiso, Indiana or Valparaiso, Chile, you can access the LPI’s computers. International access is available on SCIENCEnet, an electronic mail network from Omnet, Inc.

LPI databases currently available are the Geophysical Data Facility, the Lunar and Planetary Science Conference Program (option LPI) and the Bibliographic Search Service (option LPI.BSS). Others will be added soon.

To access the LPI from a SCIENCEnet mailbox, just type:

Command? Goto XDATA
Connect me to: LPI (or LPI.BSS)
LPI is just one of the databases available. There’s also Pnet (from the American Institute of Physics); ASTIS (from the Space Telescope Science Institute); ADC (the Astronomical Data Center of the National Space Science Data Center); and SIMBAD (Set of Identifications, Measurements, and Bibliography for Astronomical Data of the Strasbourg Astronomical Data Centre; you must have an ID assigned by the Smithsonian Astrophysical Observatory to access SIMBAD). Many other databases—oceanographic, climactic, polar—are also available on SCIENCEnet.

SCIENCEnet offers researchers access from most places in the world. Scientists in two experiment groups currently log on from three continents. Electronic mailing lists and many general and specific bulletin boards facilitate communication.

From a SCIENCEnet mailbox you can send messages to NASAnet, Ptnet, Bitnet, Internet, SPAN, Dialcom, Easylink, and many other systems. You can also send telex and fax messages.

For more information about SCIENCEnet, write:

Omnet, Inc.
137 Tonawanda St.
Boston, MA 02124

617-265-9230

OSSA-Sponsored NASA Science Internet Project

The NASA Science Internet (NSI) project is sponsored by NASA’s Office of Space Science and Applications (OSSA) and is responsible for providing networking services to OSSA-funded researchers worldwide. The NSI network infrastructure includes both SPAN (a DFCnet-based net) and NSN (TCP/IP based). In addition, the NSI formally cooperates with non-NASA networks (i.e., NSN or HEPnet) to provide additional connectivity. Plans for FY89 include the following:

—Meet all OSSA science communications requirements using SPAN, NSN, and other cooperating networks.

—Consolidate diverse networking activities into optimum design to improve both connectivity and interoperability and to reduce costs.

—Encourage international regional infrastructure (Pacific Basin, Europe, South America) and make connections as appropriate.

—Build effective operations environment including trouble reporting/resolution and act as a clearing house for network information.

—Improve customer support by defining and initiating development of user, security, and network tools.

—Further the interoperability of SPAN with NSN (DECNnet with TCP/IP).

—Demonstrate use of new technology, methodologies, and service offerings.

—Improve understanding of security issues and implement preventive security measures.

—Promote resource sharing with other providers, e.g., NSF or DOE.

—Participate in NASA user information forums, e.g., Lunar and Planetary Science Conference and Data Systems Users Working Group (DSUWG).

—Participate in Strategic Planning with Code EC (Communications Division of OSSA).

Representatives of NSI will be attending the 20th Lunar and Planetary Science Conference in Houston this spring. They will take this opportunity to meet with the science community in attendance, and they hope that individual concerns or issues regarding networking will surface as a result. The NSI Project Office encourages your comments or queries and can be reached directly by telephone (415-694-5859, FTS 464-5859) from 7:30 a.m. - 5:00 p.m. Pacific time.

LPI Telecommunications Numbers

This list of LPI telecommunication numbers is provided for your convenience:

1. **LPI Telex Number:** 6400832
 Answerback: LAPI ||| C

2. **LPI FAX Number:**
 - 713-486-2162
 - Direct dial access to LPI VAX:
 - 713-486-8214 or
 - 713-486-9782

1. **LPI SPAN Node Name:** LPI
 Guest Account Username: LPI
 Password Needed

2. **Bibliography Username:** SEARCH
 Password: LPI

3. **NASPmail Account:** LPI

LPIB No. 52
Education News

International Space University

The International Space University (ISU), headquartered in the United States, is a nonprofit international graduate education program for space development and research. The first educational institution of its kind in the world, ISU was founded in 1987 to provide graduate-level students who demonstrate academic excellence and leadership qualities with an annual Summer Session embracing eight concentrations of study in a multidisciplinary approach to space science and policy. The Summer Session offers projects of importance for the advancement of space research and development. The intensive summer course, consisting of over 240 hours of lectures and 280 hours of design project work, compresses a full year of study into two months.

At ISU's 1988 Summer Session, held at the Massachusetts Institute of Technology, 104 students from leading educational institutions in 21 nations spent two months covering Space Life Sciences, Resources and Manufacturing, Satellite Applications, Space Sciences, Business and Management, Space Architecture, Space Policy and Law, and Space Engineering. A joint class project was the development of a model international lunar base. Future Summer Sessions will be held in Europe and other regions. The ISU Board of Directors and Board of Advisors is comprised of distinguished business and government leaders, scientists, space experts, and academicians from many countries. In addition, there are 10 ISU liaisons throughout the world. They are located in Canada, India, Japan, People's Republic of China, Sri Lanka, Switzerland, United Kingdom, United States, USSR, and the European Space Agency. ISU is supported by over 70 corporate and governmental sponsors.

An agreement formalizing cooperation between the Moscow Aviation Institute (MAI) and ISU was signed in Moscow on December 16 designating MAI as the Soviet Union's official National Liaison to ISU. The agreement followed a week of negotiations held at MAI, the leading academic institution for aeronautics and astronautics in the USSR. The cooperation agreement was initialed following the Soviet Union's successful participation in the inaugural ISU'88 Summer Session program held at the Massachusetts Institute of Technology. Four of twelve Soviet students who participated in ISU'88 came from MAI as the result of a U.S. $100,000 grant scholarship underwritten by the USSR State Committee on Public Education.

Included in the ISU/MAI agreement is the possibility that MAI may host a future ISU Summer Session following the 1989 program, which will be held at the Universite Louis Pasteur in Strasbourg, France, June 30 through August 31.

The agreement between Moscow Aviation Institute and the International Space University is subject to approval by the ISU Board of Directors.

Astronomy Day: Taking Astronomy to the People

1989 marks the 16th year that amateur and professional astronomers have banded together to host special events worldwide promoting astronomy to the general public. This year's Astronomy Day has been set for May 13, 1989. Now is the time for astronomy clubs, science museums, astronomy departments, planetariums, etc., to start planning events for the spring. To aid these institutions, the Astronomical League has published a 120-page handbook listing ideas, suggestions, and resources. This booklet was produced under the V. M. Slipher grant of the National Academy of Sciences and is free (while supplies last), except for a minimal $2.00 charge for postage and handling. Requests from outside the U.S. should include $3.00 in U.S. currency.

The first annual "Sky and Telescope Astronomy Day Award" is being offered in 1989 to the organization that best exemplifies the concept of Astronomy Day. First prize is a $100 gift certificate from Sky Publishing. For a set of rules and entry forms (without ordering the handbook), send a self-addressed, stamped legal size envelope to:

Gary E. Fomlinson
Astronomy Day Coordinator
Astronomical League
c/o Chaffee Planetarium
54 Jefferson Avenue S.E.
Grand Rapids, MI 49503
616-456-3985

Astronomy Day is sponsored by 13 astronomy and astronomy education organizations representing a combined membership of over 300,000 people. Individuals wanting more information about local events should contact their local astronomy institution.

Earlier Launch Date Set for NASA Hubble Space Telescope

NASA has rescheduled the launch of the Hubble Space Telescope from February 1990 to December 1989. The earlier date was made possible following reassessment of a variety of factors including payload requirements and Space Shuttle orbiter assignments during the period.

The telescope, which fills the orbiter cargo bay, will be deployed by the Shuttle crew with the aid of the orbiter remote manipulation system. The Hubble telescope is the first spacecraft designed for routine on orbit servicing by the Space Shuttle crew. In the mid-1990s, a Shuttle crew is expected to revisit the telescope to replace onboard scientific instruments with new instruments incorporating advanced technology now under development.

The Astrophysics Division of the Office of Space Science and Applications, NASA Headquarters, and the project management center, Marshall Space Flight Center, will establish a new shipping schedule for the Hubble spacecraft, which is presently located at the Lockheed Missiles and Space Co. facility in Sunnyvale, California. The schedule for a final ground systems test involving the Hubble spacecraft also may be affected.

NASA Press Release 88-143

Results of PCWG Image Display Questionnaire

At last year's PSC, a questionnaire was distributed to ask the planetary community about the level of interest in digital image processing and display. Although the response was somewhat disappointing there does appear to be a good core of interest. A list of the names will be kept for future distribution of information about CDROMs. The production of Voyager CDs is nearly complete, and the Planetary Data System (PDS) and Washington University are beginning to put Viking images on CD. A large image database of Mars that was created for Mars Observer will also be put on CD. The Magellan Project is producing a Venus CD with Pioneer Venus and Earth-based radar data. Thanks to those who responded: anyone others who have an interest in working with CDs can contact me at 818-354-3372 and your name will be added to the list.

Stephen Saunders
Jet Propulsion Laboratory
March
5-10 Symposium on Space Commercialization: Roles of Developing Countries, Nashville, Tennessee. Prof. F. Shahrokyi, University of Tennessee Space Institute, Tullahoma, TN 37388. Phone: 615-455-0631.

April

May
(dates to be announced)
10-14 Ninth SSI/Princeton Conference on Space Manufacturing, Princeton, New Jersey. Mary Ann Grams, Space Studies Institute, R.O. Box 82, Princeton, NJ 08542. Phone: 609-921-0377.
14-17 Joint Annual Meeting, Geological Association of Canada and the Mineralogical Association of Canada, with the participation of the Canadian Geophysical Union. Dr. Colin Stearn, Chairman. Local Organizing Committee for Montreal '89. Rm. 238, 3450 University St., Montreal, Quebec, H3A 2A7. Phone: 514-398-4082.
26-29 Eighth Annual International Space Development Conference, Chicago, Illinois. SDC Ltd., P.O. Box 64397, Chicago, IL 60664-0397.

June
6-8 Fourteenth Symposium on Antarctic Meteorites, Tokyo, Japan. Takao Hoshiai, Director-General, National Institute of Polar Research, 9-10 Kaga 1-Chome, Itabashi-ku, Tokyo 173, Japan.
Calendar

July

- **9-19**
 28th International Geological Congress. Washington, D.C. Dr. Bruce Hanshaw. Secretary General, 28th IGC. P.O. Box 1001, Herndon, VA 22070-1001. Phone: 703-648-6053.

- **24-Aug. 4**
 International Association of Geomagnetism and Aeronomy, 6th Scientific Assembly, Exeter University, United Kingdom. Dr. Roy Jady, IAGA 1989 Organizing Secretary, Department of Mathematics, University of Exeter, Exeter ED4 4QE, United Kingdom.

- **25-26**
 Cosmogenic Nuclide Production Rates in Meteorites, Vienna, Austria. Pam Jones, Lunar and Planetary Institute, 3303 NASA Road One, Houston, TX 77058-4399. Phone: 713-486-2150.

- **27-28**
 Differences Between Antarctic and Non-Antarctic Meteorites, Vienna, Austria. Pam Jones, Lunar and Planetary Institute, 3303 NASA Road One, Houston, TX 77058-4399. Phone: 713-486-2150.

- **31-Aug. 4**
 52nd Meteoritical Society Meeting, Vienna, Austria. Pam Jones, Lunar and Planetary Institute, 3303 NASA Road One, Houston, TX 77058-4399. Phone: 713-486-2150.

September

- **24-29**
 Seventh International Conference on Geochronology, Cosmochronology and Isotope Geology, Canberra, Australia. Organizing Committee, ICGG 7, Research School of Earth Sciences, Australian National University, G.P.O. Box 4, Canberra. A.C.T. 2601, Australia.

October

- **2-6**
 Seventh Thematic Conference on Remote Sensing for Exploratory Geology, Calgary, Alberta, Canada. Robert H. Rogers, Chairman, Program Committee, ERIM, P.O. Box 8618, Ann Arbor, MI 48107-8618. Phone: 313-994-1200, ext. 3382.

- **23-27**
 International Symposium on First Results of the Phobos Mission and Future Space Exploration of Mars, Paris, France. C. de Bergh, Observatoire de Paris, 92195 MEUDON Cedex, France.

- **30-Nov. 3**

November

- **6-9**
 Geological Society of America Annual Meeting, St. Louis, Missouri. Edna Collis, G.S.A., 3300 Penrose Place, P.O. Box 9140, Boulder, CO 80301. Phone: 303-447-2020 or 1-800-GSA-1988.

LPI Announces Summer Research Opportunity

The Lunar and Planetary Institute is once again offering selected undergraduates an opportunity to participate actively in lunar and planetary research with scientists at the Institute and at the NASA Johnson Space Center. The purpose of this program is to expose undergraduate students in planetary and terrestrial studies to actual research environments in order to help them examine and focus on their goals. Typical projects in past years have included studies in cosmic dust and lunar sample characterization, meteorites and their origins, properties of planetary regoliths and atmospheres, planetary volcanism, geochemistry, and spectroscopic observations of planetary surfaces. Each project is directed by an LPI or JSC scientist.

College undergraduates with at least 50 semester hours credit who are interested in pursuing a career in the physical sciences are eligible. Selection is based upon the following criteria: (1) scholarship, curriculum, and experience, (2) career objectives and scientific interest, and (3) match of interest of applicant with available research projects.

The application deadline for this year's Summer Intern Program is **March 13, 1989**. For questions concerning the application information or the Summer Intern Program in general, please contact:

LPI Projects Office
3303 NASA Road One
Houston, TX 77058-4399
713-486-2150 or 2158

This program is supported by the LPI through funding from NASA Headquarters through the Universities Space Research Association.
PRELIMINARY CONFERENCE PROGRAM
20th Lunar and Planetary Science Conference
March 13-17, 1989

Monday, March 13, 1989
MARS REMOTE SENSING
8:30 a.m. Gilruth 104

Lee S. W.* Clancy R. T.
Viking IRTM Observations: Regional Albedo and Photometric Studies of Mars

Dollfus A.* Deschamps M. Zimbelman J.
Granulometry of the Martian Surface by Photopolarimetry

Gunness E. A.* Arvidson R. E.
Viking Optical and Thermal Evidence for Widespread Duricrust Substrate on Mars

Strickland E. L. III*
Physical Interpretation of Thermal and Reflected Data on Martian Surface Units

Pintet P.* Chevrier S.
Earth-based Telescopic Near-infrared Probing of Mars by CCD-imaging

Bell J. E. III* McCord T. B.Lucy B. G.
Iron Oxide Mineralogy on Mars: New Results Based on High Resolution Imaging Spectroscopy During 1988

Morris R. V.* Lauer H. V.
Effect of Matrix Properties on the Reflectivity of Dispersed Nanocrystalline Hematite: Implications for Martian Spectral Data

ISM Observations of Mars: Very First Results

Metzger A. E.* Haines E. L.
Gamma-ray Methods for the Measurement of Atmospheric Thickness and Surface Pressure at Mars

Feldman W. C.*
Neutron Signature of Carbon Dioxide and Water Ice at the Martian South Pole

Gaffey S. J.*
Carbonates on Mars: A Sedimentological Perspective

Chyba C. F.* Squyres S. W. Sagan C.
Depth to Unoxidized Material in the Martian Regolith

Traub S. G.* Cassidy W. A.
Alteration of Campo Del Cielo Soil by Meteorite Impact: Implications for the Surface of Mars

POSTER PRESENTATIONS

Bartels K. S. Burns R. G.
Oxidized Olivines on Mars: Spectroscopic Investigations of Heat-Induced Aerial Oxidation Products

Crisp J. Bartholomew M. J.
Mid-Infrared Spectroscopy of Palagonite

Edgett K. S. Christensen P. R.
The Physical Properties of Dark Intracrater Materials on Mars: Examination of Photographic and Thermal Infrared Data

McEwen A. S. Soderblom L. A. Swann J. D. Becker T. L.
Mars' Global Color and Albedo

High Resolution Stereo Camera (HRSC) Experiment Proposal for the Soviet Mars 94 Mission

Stoker C. R. Mancinelli R. Tsay F. Kim S. White I. Z. Scullion J.
Degradation of Organic Compounds under Simulated Martian Conditions Strickland E. L. III Surface Photometric Properties and Albedo Changes in the Central Equatorial Region of Mars

Thompson T. W.
Goldstone Radar Observations of Mars: The 1986 Opposition
PRESENTED BY TITLE ONLY

Gaffey S. J.
Carbonates on Mars?: Requirements for Detection and Characterization Using Reflectance Spectroscopy

Morris R. V.
Reflectivity Spectra (350-2200 nm) of SNC Meteorites

Mustard J. F. Pieters C. M. Pratt S. F.
Systematics of the 1.0 µm Absorption Band in Reflectance Spectra of Actinolite

Pieters C. M.
Seeing Through the Dust and Alteration Products of Mars

Presley M. A. Christensen P. R.
The Distribution and Origin of Dark Rust on Mars

Smith M. O. Adams J. B.
Isolation of Compositional Variance from Viking Lander Multispectral Images

Strickland E. L. III
Physical Properties of Oxio/Luna Planum and Arabia-Type Units in the Central Equatorial Region of Mars

Strickland E. L. III
Physical Properties of Meridiani Sinus-Type Units in the Central Equatorial Region of Mars

Zolotov M. Yu.
Water-bearing Minerals in the Martian Soil (Thermodynamic Prediction of Stability)

Monday, March 13, 1989
CHONDRULES AND ORDINARY CHONDrites
8:30 a.m. Gilruth Gym

Kurat G.* Palme H.
Origin of Chondrules

Wood J. A.* Hashimoto A. Holmberg B. B.
Chondrules as Near-Equilibrium Assemblages that Formed in Fractionated System

Hewins R. H. Kozul J. M.* Ulmer G. C.
Allende Olivine Chondrules, Ferroan Olivine and Oxidation

DeHart J. M.* Lofgren G. F. Sears D. W. G.
The Composition and Luminescence Properties of Chondrule Olivines and Pyroxenes in the Type 3 Ordinary Chondrites

Jones R. H.*
Petrology and Conditions of Crystallization of Type II FeO-rich Chondrules in Semarkona (1.1.3.0)

McCoy T. J.* Scott E. R. D. Jones R. H. Keil K.
Homogenization of Chondrule Silicates in Ordinary Chondrites: Constraints on Asteroidal Metamorphism

Hewins R. H.* Radomsky P. M. Connolly H. C. Jr.
Influence of Melting Kinetics on the Formation of Barred Olivine Chondrules

Lofgren G.*
Dynamic Crystallization Experiments on Pyroxene-rich Chondrule Melts: Comparison of Experimentally Produced and Natural Textures and Mineral Compositions

Graf T.* Marti K.
Exposure Ages of H-Chondrites and Parent Body Structure

Skinner W. R.*
Compaction and Lithification of Chondrites

Alexander C. M. O'D.* Arden J. W. Pillinger C. T.
Carbonaceous Components in Ordinary Chondrites: Implications for Metamorphism Vs. Heterogeneous Accretion

Hasan F. Score R. A. Sears D. W. G.*
The Natural Thermoluminescence Survey of Antarctic Meteorites—A Discussion of Methods for Reporting Natural TL Data

Hutchison I. D.* Hutchison R. Kennedy A.
Mg Isotopes and Rare Earth Abundance in Plagioclase from Ordinary Chondrites: A Search for 26Al
POSTER PRESENTATIONS

Batelier J. D.
Thermoluminescence of Plagioclase Feldspars and Implications for Meteorite Studies

Friedle F.
Regolith Processes as Possible Reflectance Spectra Controls

Husson M.
Shock Effects in H-Group Chondrites

Smith R. M.
Koppenaal D. W.

Direct Analysis of Terrestrial and Meteorite Samples Using Laser Ablation Inductively Coupled Mass Spectrometry

PRESENTED BY TITLE ONLY

DeHart J. M.
Lofgren G. L.
Sears D. W. G.
Cathodoluminescent Phosphors in the Matrices of Type 3 Ordinary Chondrites

Marakushev A. A.
Granovsky L. B.
Zinoveeva N. G.
Mitrekina O. B.
Microprobe Analysis of chondrite Yefremova (C3): New Data and Their Genetic Interpretation

Kashkarov L. I.
Korotkova Ê. Ê.
Kashkarova V. Ê.
Skripkin A. Ya.
Investigation of Nikol'Shoe 14-5 Chondrule Olivines by Thermoluminescent Method

Kashkarov L. I.
Kalinina G. V.
Frank Studies in Olivines from Chondrules and Matrix for the Ordinary Chondrites Tieschitz 113, Saratov 14, and Elenovka 15

Koeberl C.
Horsch H. F.
Merkle R. K. W.
Reimold W. U.
New Mineralogical and Chemical Data on the Mackinga (16) Chondrite. Malaysia

Matsuda H.
Nakamura N.
Noda S.
Allende Chondrules: Earlier Demonstration of Fractionated and Unfractionated REE and Alkali Metals

Metzler K.
Bischoff A.
Accretional Dust Mantles in CM Chondrites as Indicators for Processes Prior to Parent Body Formation

Miyamoto M.
Carbonates in Some Meteorites: Information from Absorption Ba Bands Near 5.55 μ

Nagahara H.
Formation of Chondrules and Matrix Materials in the Heterogeneous Solar Nebula

Nakamura N.
Shimaoka T.
Experimental Investigation of Vaporization and Fractionation of Alkali Metals During Melting of a Chondritic Material and Their Bearing on Chondrule Formation

Noda S.
Nakamura N.
REE, Sr, Ba and Alkali Metal Characteristics of Fine-Grained Rims from Allende Chondrules

Skinner W. R.
Cold vs Hot Accretion of Tieschitz and Other Chondrites

Monday, March 13, 1989
COSMIC DUST 1
8:30 a.m.
Gilruth 206

Jackson A. A.
Zook H. A.
Resonance Trapping of Comet and Asteroid Dust Particles by the Earth and Mars

Jou P.
Aubert I.
Brownlee D.
Hrubesh L.
Williams J.
Albee A.
Effectiveness of Impact Capture Media

Lindstrom D. J.
Zolensky M. E.
Lindstrom M. M.
Procedures for Instrumental Neutron Activation Analysis of Individual Cosmic Dust Particles

Gibson E. K. Jr.
Hartman C. P.
Blanford G. I.
Analysis of Intergalactic Dust Particles for Volatiles and Simple Molecules

Richter F. J. M.
Mukhin I. M.
Fominova M. N.
Fiala F. M.
Laser Silicate Chemistry in P/Comet Halley from Puma-2 Data

McDonnell J. A. M.
Pankow G. S. A.
Green S. F.
Perry C. H.
The Comet Nucleus, Ice and Dust Morphological Balances in a Production Surface of Comet P/Halley
Possible Composition of Halley Comet Dust (SI-rich Particles) According to the Data Obtained by Mass-Spectrometer Puma-2

Identification of Solar Nebula Condensates in Interplanetary Dust Particles. Unequilibrated Ordinary Chondrites and Carbonaceous Chondrites

A Model Comet Made from Mineral Dust and H₂O-CO₂ Ice: Sample Preparation Development

Micron and Submicron Particle Flux Enhancement Within the Earth's Magnetosphere I: In-Situ and Laboratory Source Data

Micron and Submicron Particle Flux Enhancement Within the Earth's Magnetosphere II: Transport Mechanisms and Particle Dynamics in Cislunar Space

Micrometeorite Impact on Thin Films: Numerical Simulation

Computer Simulation of Dust Grain Evolution

POSTER PRESENTATIONS

Large Mineral Grains in Interplanetary Dust

Micron and Submicron Particle Flux Enhancement Within the Earth's Magnetosphere III: Charged Particle Trapping and Enhanced Lifetime Criteria Between 1.7 and 3.0

Particle Emission from Artificial Cometary Surfaces: Material Science Aspects

Grain Size Distributions of Magneli Phases and Metallic Titanium in Chondritic Porous Interplanetary Dust Particles

Crystal Evolution and Dust Emission of Artificial Cometary Nuclei

Nondestructive Cosmic Dust Positioning and Velocity Sensor

Multielement Analyses of Interplanetary Dust Particles with PIXES and SYVEX

Carbon Isotopic Measurements of Deep Sea Spherules

On the Meteoroid Flux Striking the Solar Max Satellite

Monday, March 13, 1989

MARS: REMOTE SENSING/VOLCANISM

1:30 p.m. Gilruth 104

Comparison of Mars Radar Scattering Measurements at Widely Separated Subradar Latitudes

Martian Quasi-Specular Echoes: Preliminary 1986 Results

Telescopic Detection of Sulfur Compounds on Mars

CO₂ and SO₂-Bearing Anionic Complexes Detected in Martian Atmospheric Dust

Acid Weathering on Mars. Spectroscopic Investigations of Sulfuric Acid — Degraded Olivines and Sulfides

Estimating Eruption Rates of Planetary Lava Flows
Balog\sa, S. * Crisp, I.
Gravitational Scaling of Kilauea Eruptions

Francois P. W. * de Silva, S. L. Mouginis-Mark, P. J. Self, S.
Large Diameter Volcanic Spatter Rings: Mechanisms of Origin and Significance for Planetary Studies

Fink, J. * Griffiths, R.
Laboratory Simulations of Lava Flows with Solid Crusts

Cond\it, C. D.
Volcanotectonic Patterns on the Southeast Flank of Alba Patera

Fogel, R. B. * Rutherford, M. J.
Volcanism on Mars: Experiments on CO\textsubscript{2} Solubility in Silicic Magmas

McBride, K. * Zimbelman, J. R.
Evidence of Pyroclastic Activity near Elysium Mons, Mars

POSTER PRESENTATIONS

Christensen, P. R. Thibeau, S. L.
Thermal Infrared Spectral Observations of Coated Surfaces

Greeley, R. Crown, D. A.
Volcanic Geology of Tyrrhena Patera: Morphologic Similarities to Terrestrial Ash Shields

McBride, K.
Geologic and Structural Features of the Elysium Mons Caldera

Miura, Y. Sasaki, S. Kawashima, N. Yamori, A.
Identification of Planetary Surfaces by Remote Secondary-Ion Method

Moore, H. J. Ackerman, J. A.
Marian and Terrestrial Lava Flows

Posin, S. B. Greeley, R.
Effect of Eruptive Conditions on Volcano Morphology

Salisbury, J. W. D'Aria, D.
Measurement of Christensen Frequencies in Spectra of Particulate Samples for Determination of Rock Composition

Sunshine, J. M. Pieters, C. M. Pratt, S. F.
Mathematical Deconvolution of Mineral Absorption Bands

Whitford-Stark, J. L.
Application of Remote Sensing Techniques to Alkaline Volcanic Rocks, Trans-Pecos, Texas

Zimbelman, J. R. McBride, K. M.
A Possible Pyroclastic Deposit Near Elysium Mons, Mars

PRESENTED BY TITLE ONLY

Anderson, D. Mann, M.
\textsc{vfehr} Image Processing Using \textsc{unix}, X \text{\textit{windows}}, and \textsc{cdroms}

Azuma, H. Fujii, N.
Grain Size Effects on Spectral Reflectance of Ol, Opx and Cpx Minerals - Applied to the Half Quotient Method

Beneš, K.
The Role of Analogy and Exclusiveness in Planetary Geology

Crown, D. A. Greeley, R. Sheridan, M. F. Carrasco, R.
Analysis of an Ignimbrite Plateau in the Central Andes Using Landsat Thematic Mapper Data: Implications for the Identification of Ash Deposits on Mars

Edgett, K. S.
The Lobate Features West of each of the Tharsis Montes Mars: A Re-evaluation of their Origins

Variation of Reflectance Spectra for Phunni Processed by Laser Radiometry

Morris, R. V. Agresti, D. G. Sheller, T. H. Wólcwak, T. J.
Mossbauer Backscatter Spectrometer: A New Approach for Mineralogical Analysis on Planetary Surfaces

Parfitt, F. A.
Theoretical Constraints on the Location of Eruptions and Inflows of Planetary Volcanoes: Data from Kilauea Volcano, Hawaii
Monday, March 13, 1989
CARBONACEOUS CHONDRITES
1:30 p.m. Gilruth Gym

CARBONACEOUS CHONDRITES

Further Studies on the Isotopic Composition of Interstellar Grains in Allende: 1. Diamonds

Further Studies on the Isotopic Composition of Interstellar Grains in Allende: 2. Carbon Associated with Spinel

Isotropic Compositions of H, C, and N in C-5 Diamonds from the Allende and Murray Carbonaceous Chondrites

Meteoritic Diamonds: Nature of the Amorphous Component

Planetary Noble Gases in "Phase Q" of Allende: Direct Determination by Closed System Etching

Oxygen Isotopes in Carbonaceous Chondrites

Oxygen-Isotopic Compositions of Individual Forsteritic Grains: Faalitic Rims, and Matrix Olivines from the Allende Meteorite

Carbonaceous Chondrite Parent Bodies I: Constraints and Formulation of Thermal Models

Carbonaceous Chondrite Parent Bodies II: Results and Implications of Thermal Models

Forsterite in C1 Meteorites and Interplanetary Dust: Minor Elements and Comparison with Other Meteorite Types

Dark Inclusions in Allende, Vigano, and Lewikol: Implications for Oxidation Prior to Final Accretion of CV3 Parent Bodies

In Situ Analysis of Volatile Elements and Molecules in Carbonaceous Chondrites

Petrography, Mineralogy and Matrix Composition of Yamato-82162, a New C12 Chondrite

Carbonaceous Chondrites From Queen Maud Land, Antarctica: Glimpses of New Parents

POSTER PRESENTATION

Matrix and Rim Compositions Compared for 13 Carbonaceous Chondrite Meteorites and Clasts

PRESENTED BY TITLE ONLY

Tectural and Mineralogical Modifications

The Assemblage of Al-rich Pigeonite with Cristobalite in the Metal Particle from the Efremovka CV Chondrite

Annalting Experiments on Allende (CV3): Tectural and Mineralogical Modifications

(Al2O3,P) and Other Refractory Siderophile Element-rich Particles in the Metamorphosed Carbonaceous Chondrites Karoonda, Mulga

The Kaidan Meteorite: Estimation of the Impact Velocity of the Meteorite Parent Bodies
Thermoluminescence Characteristics of Kaidun Carbonaceous Chondritic Minerals

Matsuda T., Fukunaga K., Ito K.
Fractionation of Noble Gases in Vapour-Grown Diamonds

Moroz L. V., Zinovyeva N. G., Basilevsky A. T.
Degree of Chemical Homogeneity of Carbonaceous Chondrites as Possible Analogs of Phobos Material

Steele I. M.
Cathodoluminescence Mineralogy of Meteorites

Yajima H., Matsuda T.
Noble Gases in Shock-Produced Diamond

Monday, March 13, 1989
SHOCK METAMORPHISM AND TERRESTRIAL CRATERS
1:30 p.m. Gilruth 206

Sharpton V. L., Schurayt B. C.
On Reported Occurrences of Shock-Deformed Glasses in the Volcanic Ejecta from Toba Caldera, Sumatra

Grothues J., Hornemann U., Stöfler D.*
Mineralogical Shock Wave Barometry: (I) Calibration of Refractive Index Data of Experimentally Shocked Alpha-Quartz

Grothues J., Deutsch A., Hornemann U., Stöfler D.*
Mineralogical Shock Wave Barometry: (II) Applications to Experimentally Shocked Glass

Bodough M. R., Cygan R. J., Kirkpatrick R. J., Montez B.
NMR Spectroscopic Analysis of Experimentally Shocked Quartz and the Formation of Dialectic Glass

Bottomky R. J.* York D.
The Dating of Impact Melt Rocks Using the 40Ar/39Ar Method

Deutsch A.*, Schliper U., Hornemann U.
Response of U-Pb Systematics to Shock-Wave Metamorphism II: 350-590 GPa Shock-Recovery Experiments on Zircon and Tantale

Schliper U., Deutsch A.*
Response of U-Pb Systematics to Shock-Wave Metamorphism I: Accessory Minerals in the Haughton Impact Structure, Devon Island, Arctic Canada

Garvin J. B.*, Bulton J. L., Campbell B., Zisk S.
Terram Analysis of the Meteor Crater Ejecta Blanket

In Situ 40Ar/39Ar Exposure Ages at Meteor Crater, Arizona

Grant J. A.*, Schultz P. H.
The Erosion State and Style of Meteor Crater, Arizona

Schultz P. H.*, Grant J. A.
Styles of Ejecta Emplacement, Meteor Crater

Shoemaker E. M.*, Shoemaker C. S.
Geology of the Connolly Basin Impact Structure, Western Australia

Shoemaker E. M., Shoemaker C. S., Plescia J. B.
Gravity Investigation of the Connolly Basin Impact Structure, Western Australia

Sec T. H.*, Mittlefehlid D. W., Horz E.
Analysis of Aeroballistically Dispersed Glass Samples from Wabar Crater, Saudi Arabia

Wichman R. W.*, Schultz P. H.
Loss of Large Craters in the Terrestrial Impact Record

Strom R. G.
Are Asteroids the Source of the Period of Late Heavy Bombardment in the Inner Solar System?

POSTER PRESENTATIONS

Alexandrakis J. S., Owen M. R., Currie R. A. F.
Cathodoluminescence and Microscopic Cursellar Features in Quartz from the K/T Boundary and Other Environments: Implications for their Origin
Bohor B. F., Betterton W. J., Jablonski D., Chen C. Z.
Permian-Triassic Boundary Clay in China is Volcanic, Not Impact Ejecta

Duane M. J., Reimold W. U.
The Simpson Desert Depression — An Ancient Impact Basin?

Gaffney E. S.
Two-Dimensional Gauge Interaction Effects for Plane Shock in Snow

Miura Y., Kato T.
Different Densities of Diaplectic Plagioclase Crystals Among Meteorites. Lunar Rocks and Terrestrial Impact Craters

Chemical Signatures of the Infratrappean Sediments of Deccan Traps, India and Their Implications to the K-T Boundary Scenario

Pilon J., Grieve R. A. F., Sharpton V. L., Kennedy J., Codere J.
A Ground Probing Radar Survey at Meteor Crater Arizona: First Results

Posin S. B.
Yield Stresses of Martian Complex Craters

Rocchia R., Boclet D., Bonté Ph., Castellarin A., Courtillot V., Jéhanno C., Wezel F. C.
On the Existence of Several Iridium-enriched Layers at the K-T Boundary and in a Jurassic Sequence

Tomlinson W. D.
A Possible Impact Crater in Tunisia

PRESENTED BY TITLE ONLY

Alekseev A. S., Smirnova S. B., Nazarov M. A., Badjukov D. D.
Paleontological Age of the Kara Impact Event

Badjukov D. D., Bazhenov M. L., Nazarov M. A.
Paleomagnetism of Impactsites of the Kara Impact Crater: Preliminary Results

Badjukov D. D., Nazarov M. A., Suponeva I. V.
Impact Glasses from the Kara and UST-Kara Structures

Brockmeyer P., Deutsch A.
The Origin of the Breccias in the Lower Onaping Formation, Sudbury Structure (Canada): Evidence from Petrographic Observations and Sr-Nd Isotope Data

Fedorova S. P., Sazonova I. V., Stechletkin S. I., Feldman V. I.
Diaplectic Transformation of Horablende from Puchacz-Katunki Astrobleme, USSR

Feldman V. I., Matveeva Yu. B.
Experimental Study of Regional Metamorphism of Impactsites

Masaitis V. I., Mashchak M. S., Selivanovskaya T. V.
Parameters of Excavation and Melting Zones of Kara Crater

Geology and Chemistry of the Kara and UST-Kara Impact Craters

Nazarov M. A., Badjukov D. D., Alekseev A. S.
Morphology of the Kara and UST-Kara Impact Craters, USSR

Nazarov M. A., Kolesnikov E. M., Badjukov D. D., Masaitis V. I.
Potassium-Argon Age of the Kara Impact Event

Reimold W. U., Horsch H., Durrheim R. J.
The Bronze-Granophyre from the Vredefort Structure — A Review

Sazonova L. V.
Orthopyroxene of Impact Melts - Indicator of Impact Melt Cooling (Boltysk Astrobleme, USSR)

Sazonova L. V., Feldman V. I., Korotaeva N. N.
Plagioclase Crystalization Peculiarities in Impact Melts of Boltysk Astrobleme (USSR)

Wu S.
Geologic Feature of the Duolun Impact Crater, China

Valter A. A., Kolesov G. M., Sapozhnikov D. Y., Miklishansky A. Z.
The Distribution of Meteoritic Material in Impactsites from the Terny Astrobleme (Krivot Rog, Ukr.SSR)
Vrana S.
Petrology and Chemistry of Probable Impact Melt Rocks at the Seven Crater

Monday, March 13, 1989
PLANETARY DIFFERENTIATION
1:30 p.m. Bldg. 30 Auditorium

Taylor G. J.*
Metal Segregation in Asteroids

Newsom H. E.*
The Nickel Content of the Lunar Core

Kadik A. A. Holloway J. R.*
Nickel and Cobalt Partitioning Between Silicate and Metal Liquids in the Presence of Graphite at Ten Kilobars

Bertka C. M.* Holloway J. R.
Martian Mantle Primary Melts: An Experimental Study of Melt Density and Viscosity at 23 kb

McFarlane E. A.* Drake M. J. Gasparik T.
Partitioning of Ni, Co, Sc, La, and Other Elements Between Olivine and Natural Basaltic Melt at 75 Kbars and 1800°, and Implications for the Early Thermal History of the Earth

Musselwhite D. S.* Drake M. A. Swindle T. D.
Early Outgassing of the Earth's Mantle: Implications of Mineral Melt Partitioning of I

Warren P. H.*
Volumes and Compositions of Crusts Stable Over Primordial Silicate Magmaspheres: Effects of Planet Size and FeO Content

Tonks B. B. Melosh H. J.
Crystal Settling in a Vigorously Convections Magma Ocean

Turner G.* Burgess R.
Volume Enriched Mante Fluids in Diamon

Tyburczy J. A.* Krishnamurthy R. V. Epstein S. Ahrens T. J.
Hydrogen Isotopic Fractionation During Impact: Serpentine, Isotopically Enriched Serpentine, and Murchison

Matsui T.* Tajika Fuchi
Coupled Evolution of the Atmosphere-Ocean, Continents and Interiors

PRESENTED BY TITLE ONLY

Abe Y.
Surface of a Terrestrial Planet Growing by Planetary Impacts

Rychkov A. M. Polosin A. V.
Change of Structural and Valence State of Fe Ions During Melting of Minerals (Mössbauer Study)

Rychkov A. S. M. Polosin A. V.
Double Structural Role of Fe³⁺ Ions in Carbonate Glasses (Mössbauer Study)

Jones J. H.
Geochemical Modeling of Igneous Fractional Crystallization

Kožař S. J. Schreiber H. D. Reithmüller M. W. Bienert S. E. Webb J. W.
Iron Redox Characteristics and Chemical Oxygen Diffusion in the System Anorthite-Diopside

Lucy C. G. Bell J. F.
An Isostatic Crust Composition for Mercury

Mukhojts A. B. Bulatov V. Kotelnikov A.
New High P-T Experimental Results on Orthopyroxene-Chrome Spinel Equilibria and a Revised Orthopyroxene-Spinel Coexistence Curve

Tuesday, March 14, 1989
MARS GEOLOGY
8:30 a.m. Gilruth 104

Mouginis-Mark P.*
Geologic Rationale for a Mars Rover/Sample Return Mission to Northern Elysium Planitia

Greeley R. Skaupeck A* Pollack J. B.
Martian Aeolian Features: Comparison with Results from the Global Circulation Model
Wilkinson M. J.*
Screaking on Earth and Mars

Bridges N.** Barlow N.
Variation of Martian Rampart Crater Ejecta Lohateness in Comparison to Latitude, Longitude, Terrain, and Crater Diameter

Craddock R. A.* Greeley R. Christensen P. R.
Evidence for an Ancient Impact Basin in Daedalia Planum, Mars

Frey H.* Schultz R. A.
Overlapping Large Impacts and the Origin of the Northern Lowlands of Mars

McGill G. E.*
Geologic Evidence Supporting an Endogenic Origin for the Marian Crustal Dichotomy

Craddock R. A.** Maxwell T. A.
Timing of Resurfacing Events in the Amethes and Tyrhena Cratered Highlands of Mars

Maxwell T. A.* Craddock R. A.
Mechanisms of Resurfacing in the Amethes and Tyrhena Cratered Highlands of Mars

Frey H.* Grant T. D.
Resurfacing in Coprates and Thickness of the Rridged Plains

Scott D. H.* Dohm J. M.
Chronology and Global Distribution of Fault and Ridge Systems on Mars

Golombek M. P.*
Geometry of Stresses Around Tharsis on Mars

POSTER PRESENTATIONS

Campos-Marquetti R. Jr. Robars J. Harrington M.
Geologic Map of the Ulysses Rupes Area of Mars Australe, Mars

Campos-Marquetti R. Jr.
A Dune Classification Scheme for Mars: Southern Hemisphere Eolian Bedforms

Craddock R. A. Zimbelman J. R.
Yorktown and Leyton as Viewed by the Viking I Lander

De Hon R. A.
Geologic Map of Maja Valles: MTM 20057, Northern Lunae Planum, Mars

Dimitriou A. M.
Geologic Evolution of the Highland/Lowland Transition Zone in the Ismenius Lacus Quadrangle, Mars

Melander D. E.
The Geomorphology of Eastern Gangis Chasma Within Valles Marineris, Mars

Peulvast J.-P. Costard F. M.
1/500,000 Geomorphological Mapping of Mars: Mekas Chasma, Valles Marineris

Rice J. W., Jr.
The Geology of the Maja Valles Region, Mars (MTM 20052)

Rotto S. L. Tanaka K. L.
Faulting History of the Alba Patera-Ceraunius Fossae Region of Mars

Zimbelman J. R.
Erosional Outliers of Dust Along the Southern Margin of the Tharsis Region, Mars

Zimbelman J. R.
Geologic Mapping of Southern Mangala Valles, Mars

PRESENTED BY TITLE ONLY

Jöns H.-P.
Belts of Embryonic Collisional Mountain Ranges in the Vicinity of the TaNoVa-Updoming, Mars

Jöns H.-P.
Suspected Block/Plate Boundaries Within the Mega-Aureole of the TaNoVa-Updoming on Mars

Lancaster N. Greeley R.
Preliminary Estimates of Sediment Volume in the North Polar Sand Seas of Mars
Tuesday, March 14, 1989
BHOLGHAII AND ANGRITE CONSORTIA PLUS PALLASITES
8:30 a.m. Gilruth Gym

Reid A. M.* Buchanan P.
The Bholghat Howardite: Petrology and Mineral Chemistry

Laul J. C.* Gosselin D. G. Smith M. R.
The Bholghat Consortium: Chemical Study of the Bholghat Howardite

Paul R. L. Wang M. S. Lipschutz M. E.*
Volatiles/Mobile Trace Elements in the Bholghat Howardite

Swindle T. D.* Hohenberg C. M. Nichols R. Olinga C. I.
Parental Fission Xenon in the Meteorite Bholghat?

Bogard D. D.* Garrison D. H.
"Ar/Ar Ages of Eucrites. Did the HED Parent Body Experience a Long Period of Thermal Events Due to Major Impacts?

Nagata I. E.* Wiesmann H. Bansal B. Shih C.-Y.
Rb-Sr Age of an Eucritic Clast in the Bholghat Howardite and Initial Sr Composition of the Lewis Clff 86010 Angrite

McKay G.* Le L. Wagstaff J.
Is Unique Achondrite L.W. 86010 a Crystallized Melt?

Crozier G.* McKay G.
Minor and Trace Element Microdistributions in Angara dos Reis and Lewis Clff 86010: Similarities and Differences

Mittlefehldt D. W.* Lindstrom M. M. Lindstrom D. J.
Geochemistry of L.W.86010 and Angara dos Reis and Constraints on the Genesis of the Eucrites

Lugman G. W. Galer S. J. G." 1298 R.
Rb-Sr and Other Isotope Studies of the Angric T.W.86010

Sherman S. B.* Treiman A. H.
The Olivine-Lasaitte I Equilibr: Experiments and Implications for Angrite Achondrites and Ca-Al Chondrules

Righter K.* Arvalus R. J. Delano J. W.
Redox Equilibria in Palladite Meteorites and the Eucrite Parent Body (LPH)

Davis A. M. Olsen L. J.*
The Origin of Phosphates Minerals in the Eagle Station and Springwater Pallasites

POSTER PRESENTATIONS

Zhang J. Williams D. B. Goldstein J. I.*
Tetraedrite in the Phylite of the Iron Meteorite Carlton

Zolensky M. E.* Barrett R. A.
CI1, CI2 and CM2 Clases in the Bholghati Howardite and the Al. Ra's Chondrite

PRESENTED BY TITLE ONLY

Kallemeyn G. W. Warren P. H.*
Geochemistry of the L.W.86010 Angrite

Mayeda T. K. Clayton R. N.
Oxygen Isotopes in the Bholghat Howardite

McKay G. Le L. Wagstaff J.
Redox Conditions During the Crystalization of Unique Achondrite L.W. 86010

Tuesday, March 14, 1989
PALLADITE II
8:30 a.m. Gilruth 206

Koebel C.* Hagen E. H. Faure G.
Extraterrestrial Spherules from Glacial Sediment in Minarikia: Internal Structure, Mineralogy, and Chemical Composition

Maurette M.* Brownlee D. E. Schramm L. S.
Giant Micrometeorites from Minarikia Blue Ice
Blake D. R., Fleming R. H., Bunch T. E.
Identification and Characterization of a Carbonaceous, Titanium Containing Interplanetary Dust Particle

Sutton S. R., Flynn G. J.
Trace Element Compositions of Interplanetary Dust and Terrestrial Particles Collected from the Stratosphere

Trace Element Compositions of Six "Chondritic" Stratospheric Dust Particles

Maurette M., Olinger C., Walker R., Hohenberg C.
Noble Gas Measurements of Extraterrestrial Particles from Polar Sediments

Nier A. O., Schlutter D. J.
Helium and Neon Isotopes in Stratospheric Particles

PRESENTED BY TITLE ONLY

Anufiev G. S., Boltenkov B. S., Kapitonov I. N.
Re, Ne and Ar Isotopes in the Deep-Sea Oceamic Ferromanganese Nodules

Laurance M. R.
Intact Capture of Hypervelocity Particles in Aerogels

McDonald R. A., Tanner W. G., Alexander W. M.
A Description of a Possible Coupling Between Dust Grains and Water-Based Ions in Comet P/Halley

Maurette M., Jouret C., Bonny Ph., Bradley J. P., Germany M. S., Kohn Y.
Electron Microscope Studies of Carbon-rich Grains in a New Collection of Antarctica Micrometeorites

Maurette M., Passoja D. E.
Scatter Plots of Elemental Abundances in Micrometeorites: A Non-Statistical Interpretation

Maurette M., Pouchet M., Bonny Ph., de Angelis M., Siry P.
A New Collection of Micrometeorites, Extracted from 100 Tons of Artificially Melted Blue Ice, Near Cap-Prudhomme in Antarctica

Misawa K., Ma S. I., Yamakoshi K., Nogami K., Nakamura N.
Rare Earth Element Abundances in Individual Magnetic, Sotm Spherules from Deep-Sea Sediments

Rietmeijer F. J. M., Albrecth A.
Preparation of Cosmic Dust Anologs for Shock Metamorphism

Wu L., Chou P. C.
Finite Element Simulation of Intact Capture of Hypervelocity Particles in Multiple Films

Zolensky M., Basset R., Herz J., Cardenas F., Davidson W., Haynes G., Criswell W., Koons S.
The Utility of Silica Aerogel as a Cosmic Dust Capture Medium on the Space Station

Tuesday, March 14, 1989
INTERSTELLAR GRAINS/DUST
10:15 a.m. Gilruth 206

Clayton D. D.
Origin of Xe-HL and Supernova 1987A

Svan P. S., Walker R. M., Yuan J.
Location of Small SiC Crystals in Meteorites Using a Low-Voltage X-ray Mapping Technique

Clayton D. D., Liffman K., Scowen P.
160 Anomalies in Interstellar Dust Size Fractions

Kerridge J. F.
Deuterium Enrichments and Synthesis of Meteoritic Organic Matter

Reedy R. C.
Cosmogenic-Nuclei Production Rates in Interstellar Grains

Harper C. L.
Geochronological Investigations in Superstring Cosmology
Tuesday, March 14, 1989
MARS: WATER, CANYONS, AND LIFE
1:30 p.m. Gilruth 104

Clifford S. M.
The Response of an Early Martian Groundwater System to the Onset of a Colder Climate

Oberbeck V. R.* Fogleman G.
On the Possibility of Life on Early Mars

Squyres S. W.*
Early Mars: Warm and Wet, or Just Wet?

Parker T. J.*
Channels and Valley Networks Associated with Argyre Planitia, Mars

Pieri D.* Schneeberger D.
Frosional Land Forms at Alba Patera

Shaller P. J.* Murray B. C. Albee A. L.
Subaqueous Landslides on Mars?

Davis P. A.* Golombek M. P.
Discontinuities in the Shallow Martian Crust

Robinson M. S.* Tanaka K. I.
Hydrology of a Flood Event in Kasei Valles, Mars

Costard F. M.*
Fluvio-Thermal Erosion on Mars: A Silicic Analog

Williams S. W.* Zimbelman J. R.
Origin of Pedestal Eroded Material: Azanian Loxos, Mars

Schultz R. A.*
Structural Mapping and Interpretation of Valles Marineris, Mars

Lucchitta B. K. Bertoloni L. G.
Interior Structures of Valles Marineris, Mars

Croft S. K.*
Canyon Structure in the Hebes-Juventae-Ganges Area, Mars

POSTER PRESENTATIONS

Cabrol N. A.
Morphological Variations and Evolution of Channels on Mars

De Hon R. A.
Flood Surge in Martian Outflow Systems: Episodic Flow

Gulick V. C. Baker V. R.
The Role of Hydrothermal Circulation in the Formation of Fluvial Valleys on Mars

Kochel R. C. Miller S. M. O.
Morphological Distinction of Sapping- and Runoff-Dominated Valley Networks on Earth and Mars

McGeough K. A. Schumm S. A. Robinson R. S.
Martian Outflow Channel Formation by Water Erosion Under Nonequilibrium Conditions

PRESENTED BY TITLE ONLY

Costard F. M.
Asymmetric Distribution of Volatiles on Mars

Kuzmin R. O. Burba G. A. Bobina N. N. Shashkina V. P. Zabalueva E. V.
Martian Cryolithosphere: Mapping of Vertical Section Types

Mouginis-Mark P.
Recent Water Release in the Tharsis Region of Mars

Schneeberger D. M.
Episodic Channel Activity at Ma'adim Vallis, Mars
Tuesday, March 14, 1989

UREILITES, UNGROUPED CHONDrites & NEBULAR PROCESSES

1:30 p.m. Gilruth Gym

Shukla M., Venkatashala B. S., Sharma M.
Interaction of Lithosphere and Biosphere: Some Evidences from Early Metazoa and Metaphytes from India

Takeda H.*
Pyroxene Chemical Variations of Heavily Shocked Ureilites and the Planetary-scale Collision Model for the Ureilite Genesis

Beryllium-10 and Aluminum-26 Contents of Ureilites

Tomooka K.*, Takeda H.
Fe-S-Ca-Al-bearing Carbonaceous Veins in the Yamato-74130 Ureilite: Evidence for the Genetic Link to Carbonaceous Chondrites

Davis A. M.*, Prinz M.
Trace Elements in Feldspathic Clasts in Polymeric Ureilites

Brearley A. J.*, Prinz M.
Phylosilicate Minerals in Carbonaceous Chondrite Matrix Clasts in the Nippena Polymict Ureilite: Evidence for a CI-like Chondrite-Ureilite Connection

Scott E. R. D.*, Newsom H. E.
Planetary Compositions - Clues from Small Bodies and the Sun

Wasson J. T.*
Amaritic Meteorites: Anomalous Abundance of Ungrouped Irons

Rubin A. E.*, Kailaemeyn G. W.
A Unique Chondrite Group: Petrology and Chemistry of Carlisle Lakes 001 and Allan Hills 85151

Weisberg M. K.*, Prinz M., Nehru C. E., Clayton R. N., Mayeda T. K.
ALH85151 and Carlisle Lakes 001: Members of a New Chondrite Group

Prinz M.*, Weisberg M. K., Nehru C. E., MacPherson G. J., Clayton R. N., Mayeda T. K.
Petrologic and Stable Isotope Study of the Kakkangi (K-Group) Chondrite: Chondrules, Matrices, CAI's

Grady M. M., Pillinger C. T.
Nitrogen and Carbon in ALH 85085 - Links with Benzubbin?

Gosselin D. C.*, Laul J. C.
Chemistry of Allan Hills 85085: Characterization of a Unique Chondrite

Eugster O.*, Niedermann S., Wang D.
Unusual Meteorites LEW86010 and ALH85085 and Eleven Chondrites: Characterization from Cosmogenic and Trapped Noble Gases and Mineralogy

PRESENTED BY TITLE ONLY

Berkley J. L.
Precision Minor Element Analyses in Silicate Minerals in Ureilites

Bischoff A., Meier K., Stöffler D., Palme H., Spettel B.
Mineralogy and Chemistry of the Anomalous Chondritic Breccia ALH 85085

Cassidy W. A.
Estimating Relative Abundances of Meteorite Types

Goodrich C. A., Patchett P. J., Drake M. J.
Nd Isotopic Analyses of Ureilites: Evidence for Mixing of a 4.55 Ga Component with a Younger Component

Miyamota M., Nishimura Y., Matsuda J., Ito K.
Raman Spectra of Ureilite Diamonds

Saito J., Takeda H.
Mineralogical Study of LEW85328 Ureilite

Weisberg M. K., Prinz M., Nehru C. E.
Evidence for a Relationship Between Benzubbin, ALH85085 and CR Chondrites
Tuesday, March 14, 1989
LUNAR GEOLOGY, PROCESSES AND RESOURCES
1:30 p.m. Gilruth 206

Hood I. L.* Huang Z.
Effects on Ambient Magnetic Fields and Plasma of the Expanding Vapor Cloud Produced in Lunar Basin-Forming Impacts

Spudis P. D.* Hawke B. R. Lucey P. G.
The Lunar Crisium Basin: Geology, Rings, and Deposits

Clark P. E.*
The Relationship Between Orbital and Sample Data for Lunar Landing Sites

Jaumann R.* Neukum G.
Spectrophotometric Analysis of the Lunar Plinius Apollo 17-Region

Pieters C. M.*
Compositional Stratigraphy of the Lunar Highland Crust

Lucey P. G.* Hawke B. R.
Telescopic Thermal Infrared Measurements of the Silicate Mineralogy of Lunar Red Spots

Coombs C. R.* Hawke B. R.

Oberst J.* Nakamura Y.
A New Estimate of the Meteoroid Impact Flux on the Moon

Haskin L. A.*
The Moon as a Practical Source of Hydrogen and Other Volatile Elements

Heiken G. H.* Vaniman D. T.
 Petrography of Lunar Ilmenite Resources

Hawke B. R.* Coombs C. R. Clark B.
Pyroclastic Deposits: an Ideal Lunar Resource

Oder R. R.* Taylor L. A. Keller R.
Magnetic Characterization of Lunar Soils

POSTER PRESENTATION

Chevel S. Pinet P.
Lunar Mare-Highland Horizontal Spectral Variations from Telescopic CCD-imaging

Clark P. F. Hawke B. R.
The Lunar Farside Revisited: East of Smythii and Beyond

Clarke T. C. Fornal F. P.
Galileo Spacecraft Encounters with the Earth-Moon System

Coombs C. R. Hawke B. R. Lucey P. G. Head J. W.
Geologic and Remote Sensing Studies of the Alphonsus Crater Region

Hawke B. R.* Lucey P. G.* Spudis P. D. Owensby P. D.
Impact Structures as Crustal Probes: A Summary of Recent Progress

Irvine K. Peclonics J. L. Irvine W. M.
Derivation of an Average Single Particle Phase Function for the Lunar Regolith

Kozloski R. W. Sprague A. L. Lebofsky L. A.
Comparison of the Thermal Emission Spectra from the Surfaces of Mercury and the Moon

Ledlow M. Burns J. Zhao J. H. Gisler G. Zcik M. Baker D.
Earth-based Radio Observations of the Planet Mercury

Spectral Mixing Model Approach to the Analysis of the Spectra of Lunar Soils

Lucey P. G. Hawke B. R.
Imaging Spectroscopy of the Central Highlands from 3 to 100µm

Lucey P. G. Nelson M. Granahan J. Hawke B. R.
The Dependence of Near-Infrared Spectral Parameters on Lunar Rock Type Composition

27
PRESENTED BY TITLE ONLY

Campbell R. A. Hawke B. R. Bell J. F. III Zisk S. H.
The Bessel Ray Region: Preliminary Analysis of Remote Sensing Data

Colson R. O. Haskin L. A.
Some Effects of Composition on Efficiencies for Production of O and Fe by Silicate Melts by Electrolysis

Houdashelt M. L. Bustin R. Gibson E. K. Jr.
Hydrogen Extraction from Lunar Soil: Methods Applicable to a Lunar Processing Facility

Pugacheva S. G.
Regionalization of the Moon’s Surface Based on the Thermal Radiation in the IR Region of the Spectrum (10-12 Microns)

Rodionova Zh. F. Shevchenko V. V.
Distribution of Craters with Central Peaks and with Hills and Ridges at Bottom over the Lunar Surface

Tuesday, March 14, 1989
OPPORTUNITIES IN SOLAR SYSTEM EXPLORATION
8:00 p.m. Building 2 Auditorium

L. Fisk, NASA Headquarters
OSS Strategic Plans

V. Barsukov, Vernadsky Institute
and
S. Keller, NASA Headquarters
Review of Bi-lateral Discussions

Wednesday, March 15, 1989
VENUS GEOPHYSICS
8:30 a.m. Gilruth 104

Fletcher R. C.
Implications of Folding for the Rheological Structure of the Crust of Venus

Solomon S. C.
Head J. W.
Lithospheric Flexure Beneath the Frevia Mons Foredeep, Venus: Constraints on Lithospheric Thermal Gradient and Heat Flow

Williams D. R.
Greeley R.
Stress Distribution on Tellus Regio, Venus, Inferred from Gravity and Topography

Smrekar S.
Phillips R. J.
Implications of Gravity Modelling for a Thermal Isostasy Hypothesis for Bell Region, Venus

Black M. T.
Zuber M. T.
McAdoo D. C.
Comparison of Observed and Predicted Gravity Profiles over Aphrodite Terra, Venus

Sotin C.
Senske D.
Head J. W.
Parmentier E. M.
Analysis of Topography and Line of Sight (LOS) Accelerations over Western Aphrodite: Evaluation of a Spreading Center Model

Phillips R. J.
Tectonic Response to Mantle Dynamics in Venus

Kiefer W. S.
Hager B. H.
The Role of Mantle Convection in the Formation of Highland Regions on Venus

McGovern P. J.
Solomon S. C.
Influence of Volatile Loss on the Mantle Temperature of Venus

Stofan E. R.
Head J. W.
Coronae of Mnenosyne Regio, Venus: Morphology and Origin

Schubert G.
Bercovici D.
Thomas P. J.
Campbell D. B.
Venus Coronae: Formation by Mantle Plumes

Hess P. C.
Head J. W.
Parmentier E. M.
Melting of Venustian Mantle at Spreading Centers

PRESENTED BY TITLE ONLY

Bindschadler D. I.
Parmentier E. M.
Mantle Flow Tectonics and a Weak Lower Crust: Implications for Formation of Large-scale Features on Venus
Wednesday, March 15, 1989
CAls
8:30 a.m. Gilruth Gym

Palme H.*, Hutcheon I. D., Spettel B.
The Bulk Composition of "Fremdlinge" from a Ca-Al-rich Allende Inclusion

Paque J. M.*
Vanadium-rich Refractory Platinum Metal Nodules from a Fluffy Type A Inclusion in Allende

Crozar G., MacPherson G. J.* Lundberg L. L.
Rare Earth Element Distribution in a Complex Type III Allende Inclusion. an Ion Microprobe Study (Revisited)

Zinner E. K.*, Caillet C., El Goresy A.
Mg- and O-Isotopic Compositions of Periclase, Spinel, and Melilite from Vigarano CAI 4778

Isotopic and Chemical Constraints on the Formation of HAl-type Refractory Inclusions

Comparison of 26Al and Initial 87Sr/86Sr Systematics in Allende CAIs

Brigham C. E.*, Hutcheon I. D., Wasserburg G. J.
A Petrographic and Isotopic Study of Major Phases and Opaque Assemblages in an Allende Fun Inclusion

Kennedy A.*, Hutcheon I. D., Wasserburg G. J.
Chemical and Isotopic Constraints on the Formation and Evolution of SA-I, a Basaltic CAI from Allende

Kelley J. P. *, Russek P. R.
Alteration of Ca- and Al-rich Inclusions in Allende: Transmission Electron Microscope Study

Fegley B. Jr., Kong D. *
Mo and W Depletions in CAIs in Carbonaceous Chondrites: A Theoretical Study of the Effects of Nebular Toral Pressure

Kuehner S. M.*, Laughlin J. R., Grossman L.
Non-Equilibrium Trace Element Partitioning and Relict Grains in a Type BI CAI

Boctor N. Z.*, Hutcheon I. D., Wasserburg G. J.
Petrology and Opaque Mineralogy of an Armalcolite-Bearing Basaltic CAI from the Allende Meteorite

Armstrong J. T. *
Evidence of Post-Accretional Alteration of CAIs in the Vigarano Carbonaceous Chondrite

PRESENTED BY TITLE ONLY

Exett I. M., Taylor S. R.
Ce Isotope Anomalies in Inclusions from Allende and Murchison Meteorites

Hydrogen Isotope Abundances in Early Solar System Materials

Ulyanova A. A., Ustinov V. I., Kononkova N. N., Shukolyukov Yu. A.
Oxygen Isotopic Anomalies in Metasomatically Altered Refractory Inclusions of Carbonaceous Chondrites

Wednesday, March 15, 1989
NATURE AND EFFECTS OF IMPACT CRATERING
8:30 a.m. Gilruth 206

Crawford D. A.*, Schultz P. H., Srnka L. J.
Magnetic Probing of Early-Time Impact Phenomena

Vickery A. M.*
Jetting and the Origin of Tektites

Glass B. P. *, Wasson J. T., Futrell D. S.
A Layered Moldavite Containing Buddeleyite
AVAILABLE FROM LPI

— BOOKS —

Origin of the Moon provides a synthesis of models and theories about the formation of the Moon. In this collection of 33 original research and review papers are the findings and contributions of both data analysts and planetary theorists. There are historical reviews covering the early history of scientific thinking as well as scenarios based on the post-Apollo views. The book includes papers discussing the traditional scenarios of capture, fission, and coaccretion. Two additional ideas—the impact trigger model and a coaccretional “composition filter” model—are also presented. Dynamic, geochemical, and geophysical constraints are explored in detail.

Hardcover, 800 pp., 187 figures, glossary, subject and author indexes

Order Code: B-ORIGIN, $25.00

LUNAR BASES AND SPACE ACTIVITIES OF THE 21ST CENTURY—Edited by W.W. Mendell

This book contains 90 individual articles which address the various problems and opportunities associated with development of a manned base on the Moon. Also included are ideas for missions to Mars and other proposed space activities of the twenty-first century. It is an informative, referenceable text for research scientists and college students as well as interested laymen and is heavily illustrated with diagrams, photos, and artists’ conceptions. As applicable to lunar occupation, the technology discussed encompasses agriculture, architecture, astronomy, engineering, economics, geology, hydrology, medicine and health, mining, manufacturing, physics, and space research.

Softcover, 865 pp., 211 figures and illustrations, indexes, references

Order Code: B-BASES, $20.00

PLANETARY SCIENCE: A LUNAR PERSPECTIVE—S. Ross Taylor

This publication is an excellent synthesis of information on our understanding of the nature, origin, and evolution of the solar system. It addresses such topics as: planetary geology and stratigraphy; meteorite impacts, craters and multi-ring basins; planetary surfaces and crusts; basaltic volcanism and planetary interiors, and the chemical composition of the planets. In addition to the text, this book offers 24 pages of appended material. It has become a definitive reference work for the planetologist as well as the astronomer.

Hardcover, 481 pp., 176 illustrations, glossary, index

Order Code: B-PLANS, $30.00

CHONDRULES AND THEIR ORIGINS—Edited by E.A. King, Jr.

Chondrules and their Origins contains review papers and original research contributions designed to provide the reader with a broad knowledge of the most recent data regarding the origin and history of chondrules. As a resource text, it also provides an extended bibliography of 467 related papers.

Hardcover, 375 pp., 129 figures and tables, subject index

Order Code: B-CHON, $25.00

— SLIDE SETS —

Each set includes an explanatory booklet.

STONES, WIND, AND ICE: A GUIDE TO MARTIAN IMPACT CRATERS This set of 30 slides, compiled largely from Viking Orbiter and Lander images, illustrates both the diversity of impact craters on Mars and the significance of these features in understanding the geological evolution of this complex planet. Many of the landforms produced by the interaction of the cratering process with the Martian environment are seen virtually nowhere else in the solar system. Impact craters also provide a means of deducing the sequence and timing of events that have shaped the Martian surface. (30 slides)

Order Code: S-STONES, $13.00

VOLCANOES ON MARS This slide set illustrates various geologic features on Mars. The set includes some of the best examples of Viking Orbiter images that include constructional volcanic landforms. Approximately half of the slides deal with the large shield flows on the flanks of the volcanoes. The remainder of the slides shows various constructs (classified as Mons, Patera, or Tholus) from the Tharsis, Elysium, and Hellas regions as well as the km-sized mounds that are interpreted to be of volcanic origin. (20 slides)

Order Code: S-VOLCA, $10.00

APOLLO LANDING SITES This set of 40 slides provides photographic coverage of the regional setting for the six Apollo landing sites. This collection shows the sites at a variety of scales ranging from Earth-based telescopic views spanning hundreds of kilometers to high-resolution photographs taken from lunar orbit. Descriptions giving geological details for each area are included in the accompanying booklet. Useful for educators and researchers who wish to show the regional setting of samples and photographs returned by the Apollo missions. (40 slides)

Order Code: S-APOLLO, $15.00

(Over, please)
SHUTTLE VIEWS THE EARTH: THE OCEANS FROM SPACE

This slide set offers a selection of the most fascinating and informative Shuttle photographs of the oceans and features images taken with a variety of equipment. Naturally-occurring sea surface features have been photographically recorded, as well as the meteorological and oceanic influences on land masses. (40 slides)

Order Code: S-OCEAN, $15.00

SHUTTLE VIEWS THE EARTH: CLOUDS FROM SPACE

This slide collection includes some of the most informative and visually impressive cloud photographs taken in twenty-four Shuttle missions. The accompanying booklet has a foreword by astronaut Robert Crippen. The unique perspective of Shuttle photography helps us to understand weather patterns and the development of weather systems worldwide. (40 slides)

Order Code: S-CLOUD, $15.00

SHUTTLE VIEWS THE EARTH: GEOLOGY FROM SPACE

Photographs of stunning geological features on the Earth have captured the attention of Shuttle astronauts mission after mission. Shuttle photographs enable us to trace fault margins in the Earth's crust and observe large structures, such as meteor impact craters, in their entirety and in the context of their surroundings. The images reveal how much of the Earth's surface is covered by vast deserts and also provide comparisons of old volcanic structures with young erupting volcanoes at various locations around the world. (40 slides)

Order Code: S-GEOL, $15.00

--- TECHNICAL REPORTS AND CONTRIBUTIONS ---

Available for the cost of shipping and handling except as noted below.

Order Code: R-85-02 WORKSHOP ON DUST ON MARS. S. Lee

Order Code: R-86-02 WORKSHOP ON PAST AND PRESENT SOLAR RADIATION: THE RECORD IN METEORITIC LUNAR REGOLITH MATERIAL. R. Pepin, D. S. McKay

Order Code: R-86-04 WORKSHOP ON EARLY CRUSTAL GENESIS: THE WORLD'S OLDEST ROCKS. L. D. Ashwal

Order Code: R-86-05 TRAJECTORY DETERMINATIONS AND COLLECTION OF MICROMETEOROIDS ON THE SPACE STATION. F. Horz

Order Code: R-86-06 WORKSHOP ON COSMOGENIC NUCLIDES. R. C. Reedy, P. Engel

Order Code: R-86-09 MECA WORKSHOP ON DUST ON MARS II. S. Lee

Order Code: R-87-02 MARTIAN GEOMORPHOLOGY AND ITS RELATION TO SUBSURFACE VOLATILES (MECA Special Session at LPSC XVIII). S. Clifford, L. Rossbacher, J. Zimbelman

Order Code: R-87-03 MARTIAN CLOUDS DATA WORKSHOP. S. Lee

Order Code: R-88-01 PROGRESS TOWARD A COSMIC DUST COLLECTION FACILITY ON SPACE STATION. I. D. R. Mackinnon, W. C. Carey

Order Code: R-88-02 WORKSHOP ON THE GROWTH OF CONTINENTAL CRUST. L. D. Ashwal

Order Code: R-88-04 WORKSHOP ON THE ORIGINS OF SOLAR SYSTEMS. J. A. Nutl, P. Sylvester

Order Code: R-88-05 MECA WORKSHOP ON NATURE AND COMPOSITION OF SURFACE UNITS ON MARS. J. R. Zimbelman, S. C. Solomon, V. L. Sharp

Order Code: R-88-06 WORKSHOP ON THE DEEP CONTINENTAL CRUST OF SOUTH INDIA. L. D. Ashwal

Order Code: R-88-08 A COMPILED INFORMATION AND DATA ON THE MANSON IMPACT STRUCTURE. J. Hartung, R. Anderson

Order Code: R-88-09 SCIENTIFIC RESULTS OF THE NASA SPONSORED STUDY PROJECT ON MARS: EVOLUTION OF ITS CLIMATE AND ATMOSPHERE. S. Clifford, R. Greeley, R. Haberle

Order Code: R-88-10 MECA WORKSHOP ON ATMOSPHERIC H2O OBSERVATIONS OF EARTH AND MARS. S. Clifford, R. Haberle

Order Code: C-652 SYMPOSIUM ON LUNAR BASES & SPACE ACTIVITIES OF THE 21ST CENTURY. April 5-7, 1988 (abstracts)

--- LPSC ABSTRACTS ---

Abstract volumes from the following Lunar and Planetary Science Conferences are available for the cost of shipping and handling:

Order Code: ABS-04 IV — 1973
Order Code: ABS-11 XI — 1980
Order Code: ABS-12 XII — 1981

Order Code: ABS-14 XIV — 1983
Order Code: ABS-15 XV — 1984
Order Code: ABS-16 XVI — 1985

Order Code: ABS-17 XVII — 1986
Order Code: ABS-18 XVIII — 1987
ORDER FORM

In the United States send check, money order or completed purchase order. Prepayment (in $US) required on all foreign orders. Send to:

Order Department
Lunar and Planetary Institute
3303 NASA Road One
Houston, TX 77058-4399
(713) 486-2172

<table>
<thead>
<tr>
<th>BOOKS</th>
<th>ORDER CODE</th>
<th>QUANTITY</th>
<th>PRICE</th>
<th>SHIPPING</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SHIPPING & HANDLING
U.S./Canada or Surface Rate, Foreign
Foreign Airmail
$3.00 EACH Book
$25.00 EACH Book

<table>
<thead>
<tr>
<th>SLIDE SETS</th>
<th>ORDER CODE</th>
<th>QUANTITY</th>
<th>PRICE</th>
<th>SHIPPING</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SHIPPING & HANDLING
U.S./Canada or Surface Rate, Foreign
Foreign Airmail
$3.00 Single Set
$7.00 Single Set
$1.00 EACH ADDITIONAL Set
$2.00 EACH ADDITIONAL Set

Please see next page to complete form
TECHNICAL REPORTS

<table>
<thead>
<tr>
<th>ORDER CODE</th>
<th>QUANTITY</th>
<th>PRICE</th>
<th>SHIPPING</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>R-88-03 ASTRONAUT'S GUIDE</td>
<td>1</td>
<td>6.00</td>
<td></td>
<td>6.00</td>
</tr>
<tr>
<td>R-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SHIPPING & HANDLING

<table>
<thead>
<tr>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>U.S./Canada or Surface Rate, Foreign</td>
<td>$6.00 One Copy</td>
</tr>
<tr>
<td>Foreign Airmail</td>
<td>$10.00 One Copy</td>
</tr>
<tr>
<td>$1.00 EACH ADDITIONAL Copy</td>
<td>$2.00 EACH ADDITIONAL Copy</td>
</tr>
</tbody>
</table>

TOTAL FOR REPORTS

ABSTRACT VOLUMES

<table>
<thead>
<tr>
<th>ORDER CODE</th>
<th>QUANTITY</th>
<th>PRICE</th>
<th>SHIPPING</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABS-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ABS-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ABS-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SHIPPING & HANDLING

<table>
<thead>
<tr>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>$7.00 EACH Set</td>
<td></td>
</tr>
<tr>
<td>$10.00 Canada, Surface Rate, Foreign</td>
<td></td>
</tr>
<tr>
<td>$53.00 Air Book Rate, to Europe, S. America</td>
<td></td>
</tr>
<tr>
<td>$73.00 Air Book Rate, to Pacific Ocean Islands</td>
<td></td>
</tr>
</tbody>
</table>

FOR SPECIFIC PRICE FOR YOUR ADDRESS, PHONE (713) 486-2172

TOTAL FOR ABSTRACTS

TOTAL ORDER

<table>
<thead>
<tr>
<th>Name:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Address:</td>
<td></td>
</tr>
<tr>
<td>Phone:</td>
<td></td>
</tr>
</tbody>
</table>

Prices subject to change. Prices effective 6/88
Wednesday, March 15, 1989
20TH ANNIVERSARY PLENARY REVIEW
1:30 p.m. Building 2 Auditorium

Wetherill G. W.*
 Formation of the Moon in the Context of the Origin of the Solar System

Turner G.*
 Lunar Chronology

Ryder G.*
 Theories of Evolution: an Indefinite Biography of the Moon

Spudis P. D.*
 Stratigraphy and Cratering History of the Moon: Our Understanding 20 Years After Apollo 11

Geiss J.*
 Lunar Regolith and Solar History

Thursday, March 15, 1989
VENUS GEOLOGY
8:30 a.m. Gilruth 104

Kryuchkov V. P. Basilevsky A. T.*
 Radar-Bright Flow-like Features as Possible Traces of the Latest Volcanic Activity on Venus

Schaber G. G.* Kozak R. C.
 Morphologies of Ten Venusian Shields Between Lat 30° and 90° N

Roberts K. M.* Head J. W.
 Lakshmi Planum Volcanism: Style, Origin, and Relation to Other Volcanic Deposits on Venus

Gaddis L. R.*
 Estimates of Minimum Lava Flow Eruption Rates on Venus

Arvidson R. E. Plaut J. J.* Jurgens R. F. Saunders R. S. Slade M. A.
 Geology of Southern Guinevere Planitia, Venus, Based on Analysis of Goldstone Radar Data

 New Arcchio High-Resolution Radar Images of Venus: Preliminary Interpretation

Head J. W.*
 Venus Tessera as Analog to Earth Oceanic Crust Formed at Spreading Centers

Vorder Bruegge R. W.* Head J. W.
 Multi-Stage Tectonic Evolution of Eastern Ishtar Terra, Venus

Bindschadler D. L.* Head J. W.
 Models of Venus Tectonics: Evaluation and Application to Tessera Terrain

Crumpler L. S.* Head J. W.
 Eastern Aphrodite Terra, Venus: Evidence for Continued Divergent Plate Boundary Characteristics and Crustal Spreading from Diana Chasma to Ari A Regio

Frank S. L.* Head J. W.
 Spacing of Ridge Belts in the Plains-Ridge Belt Assemblage, Venus

Basilevsky A. T. Burbia G. A. Batson R. M.*
 Maps of Part of the Venus Northern Hemisphere: A Joint US/USSR Mapping Project

Ford J. P.*
 Incidence Angle and Resolution: Potential Effects on Interpreting Venesian Impact Craters in Magellan Radar Images

POSTER PRESENTATIONS

Aubele J. C.
 Characteristics and Geologic/Terrain Associations of Small Dome-like Hills on Venus

Campbell D. B. Hine A. A. Harmon J. K.
 Venus: New Radar Images

Edmunds M. S.
 Large Venesian Shields: Characterization and Comparisons
Gaddis I. R., Greeley R.
Volcanism in NW Ishtar Terra, Venus

Jurgens R. F., Ostro S. J., Goldstein R. M., Greiner W.
Polarization Radar Cross Sections of Mercury and Venus at 3.53 cm Wavelength

Kozak R. C.
Clotho Tessera, Venus: A Fragment of Fortuna Tessera?

Raitala J., Formanen T.
Coronae Chain on Venus: A Hot Spot Under a Moving Plate?

Senske D. A., Head J. W.
Syntheses of Venus Equatorial Geology: Variations in Styles of Tectonism and Volcanism and Comparison with the Northern High Latitudes

Wall S. D., van Zyl J. J., Saunders R. S.
Preliminary Investigation of Empirical and Model Relationships Between Surface Roughness and HH and VV SAR Returns: Implications for Magellan Data Analysis

Yewell S. B.
Anticipating Magellan: Interpreting Radar Images of Geological Features

PRESENTED BY TITLE ONLY

Abramov A. V., Grechishev A. V., Zherikhin N. V., Zheltikov I. A., Kreslavsky M. A., Levehenko G. M.
Morozov A. A.
Scattering Properties of Venus Surface Derived from Venera-15, 16 Data

Basilevsky A. T., Kryuchkov V. P., Bobina N. N.
Areal Distribution of the Latest Volcanic Activity as a Key to Global Tectonic Style: Comparison of Northern Venus and the Pacific

Burba G. A.
Crater Density in the Northern Part of Venus: Areal and Topographic Patterns

Burba G. A., Bobina N. N., Shashkina V. P.
Geologic Mapping of the Northern Venus: A Progress Report

Burba G. A.
Venera 15 and 16 Cartographic Products: A Review

Frank S. L., Head J. W.
Lukelang Dorsa as a Zone of Underthrusting and Possible Subduction on Venus

Head J. W.
Basic Assemblages of Geologic Units in the Venus Northern Hemisphere

Head J. W., Brugge R. V., Crumpler L.
Architecture of Orogenic Belts and Convergent Zones in Western Ishtar Terra

Johtson J. R.
Results of a Training Exercise in Geological Mapping and Interpretation of Venus: Venera Map 12

Kreslavsky M. A., Basilevsky A. T.
Tentative Analysis of RMS Map of Venus Surface Based on Venera 15,16 Measurements: Comparison with Pioneer Venus Data

Kreslavsky M. A., Basilevsky A. T.
Tentative Analysis of Reflectivity Map of Venus Surface Based on Venera 15, 16 Measurements: Comparison with Pioneer Venus Data

Kryuchkov V. P.
A System of Conjugate Strike-Slip Faults in the Ridge Belts on Venus

Marshall J. R., Fogleman G., Greeley R.
Cold Welding of Aeolian Materials in the Venusian Environments: Experimental and Theoretical Considerations

Sasaki S.
Off-Disk Implantation of the Solar Wind and the Origin of Venusian Ar

Examination of Radar-bright Depots Associated with the Crater Vymirsh Using Venera 15/16 and Pioneer Venus Roughness, Reflectivity, Altimetry, and Imaging Data

Senske D. A., Head J. W.
Venus Equatorial Geologic Units
Sinilo V. P.
Slyuta E. N.
Radarlinometry: Implications for the Morphology of Small Dome-like Hills on Venus

Stefan E. R.
Head J. W.
Major Characteristics of the Plains Corona Assemblage, Venus

Sukhanov A. I.
Tectonics of North Polar Plains on Venus

Thursday, March 16, 1989
SNCs, HEDs AND FELLOW TRAVELERS
8:30 a.m. Gilruth Gym

Jagoutz E.
Is the Shergottite EETA 79001 a Breccia?

Treiman A. H.
Origin of Olivine in the Nakhla Achondrite, with Implications for Distribution of Fe/Mg Between Olivine and Augite

Johnson M. C.
Rutherford M. J.
Hess P. C.
Experimental Study of Igneous Kaersutite Stability with Application to SNC Petrogenesis

Swindle T. D.
Nichols R.
Olinger C. T.
Noble Gases in the Nakhla Governorador Valdareas

Wentworth S. J.
Gooding J. L.
Calcium Carbonate and Silicate “Rust” in the Nakhla Meteorite

Mittlefehldt D. W.
Lindstrom M. M.
Diogenite Petrogenesis: Geochemistry and Petrology of Whole Rocks and Coarse-Grained Separates

Berkley J. L.
Petrogenetic Relationships Among Eucrite Clasts in LEW85313 Howardite

Takeda H.
Tagai T.
Discovered of Two Antarctic Eucrites with Reference to the HED (Howardite-Eucrite-Diogenite) Association

Delaney J. S.
The Relationship Between the Lewis Cliff Basaltic Achondrites (1985, 86, and 1987 Series) and Other Polymeric Achondrites

Tera F.
Carlson R. W.
Boctor N. Z.
Contrasting Pb-Pb Ages of the Cumulate and Noncumulate Eucrites

Prinzhofer A.
Papanastassiou D. A.
Wasserburg G. J.
Sm-Nd Chronology of Differentiation of Small Planets

Brouxel M.
Tatsumoto M.
Age of the Esterville Mesosiderite

Ganguly J.
Bose K.
Ghose S.
*Fe**2+**-Mg Ordering in Orthopyroxenes and the Cooling Rates of Meteorites*

PRESENTED BY TITLE ONLY

Burns R. G.
Olivine Alteration Phases in Shergottite ALHA 77005: Information from 4.2 K Mosbauer Spectra

Cruikshank D. P.
Tholen D. J.
Hartman W. K.
Bell J. F.
Brown R. H.
Three Vesta-like Basaltic Asteroids and the Origin of Eucrites

Mittlefehldt D. W.
Lindstrom M. M.
Geochemistry and Petrogenesis of Mesosiderite Whole Rock Silicates

Yaroshevsky A. A.
Migdisova L. F.
Eucrite Pomozdino: Chemical and Mineral Composition of Clasts and Matrix: A Correction
Becker R. H.*
Solar Wind Gases in a Metal Separate from Lunar Soil 68501

Kerridge J. F.* Maru K.
Nitrogen, Xenon and Argon in Lunar Regolith Breccia 60016: A Study of Solar-wind Nitrogen and Measures of Antiquity

Korotov R. L.*
Geochemical Stratigraphy of the 60009/60010 Core: Apollo 16

McKay D. S.* Wentworth S. J.
Impact Glasses in Apollo 14 Regolith Breccias and the Origin of Soils

Basu A.* McKay D. S. Wentworth S.
Regolith Breccias as Precursors of Present Day Regolith on the Moon

Jéhanno C. Bodet D. Danon J Robin F. Rocchia R.*
Search for Debris of the Tunguska Meteor: Analytical Study of Spherules from the Explosion Site

Kashkarov L. L.* Genaeva L. I.
Regolith Stage of Meteorites: Track Studies of Preserved Actinolite

POSTER PRESENTATIONS

Sprague A. L.
A Diffusion Source Mechanism for the Atmospheres of Mercury and the Moon

PRESENTED BY TITLE ONLY

Muononen K. Lumme K. Irvine W. M.
Statistical Photoclinometry and Surface Topography of Atmosphereless Bodies

Rode Q. D. Yakovlev O. I. Romashova T. V.
Experimental Impacts: Analysis of Ejected Debris

Simon S. Papke J. L. Laul J. C. Hughes S. S. Schmitt R. A.
Comparative Petrology and Chemistry of Apollo 17 Regolith Breccias

Wentworth S. J Lindstrom D. J. Zolensky M. E. Lindstrom M. M. McKay D. S.
INAA of Glass Spheres from Ancient Apollo 16 Regolith Breccias

Thursday, March 16, 1989
COSMIC RAYS
10:15 a.m. Gilruth 206

Rao M. N.* Padia J. T.
Proton to Neon Ratio in Ancient Solar Flares Based on Fayetteville and Kapoeta

Nichols R. H., Jr.* Hohenberg C. M. Olinger C. I. Goswami J. N.
Pre-Compaction Irradiation of Individual Grains from Meteorite Breccias: Exceedingly Long Regolith Histories or An Active Early Sun?

Michel R.* Cloth P. Dragovitsch P. Filges D.
On the Production of Cosmogenic Nuclides in Meteoroids by Galactic Protons

Mattew K. J. Rao M. N.* Michel R. Presher K.
Production of Stable Xenon Isotopes from Barium by Low-Energy Protons

Mattew K. J. Rao M. N.* Michel R.
High Energy Spallation Xenon Spectrum from Barium Targets

Fireman E. I.* Beukens R. P.
Carbon-14 Production by 155-Mev Protons in Meteorites

Juij A. J. F.* Donahue D. J. Limpic F. W.
Trends in Carbon-14 Terrestrial Ages of Antartic Meteorites from Different Sites

Cosmogenic Radionuclides in the Antarctic HS-Chondrites 1 FW 85319 and 1 FW 85320
POSTER PRESENTATION

Jull A. J. T., Englert P. A. J., Donahue D. J., Reedý R. C., Lal D.

Cosmogenic Nuclide Production Rates: Carbon 14 from Neutron Spallation

PRESENTED BY TITLE ONLY

Alexeev V. A.
Distrioption of Long-lived Cosmogenic Radionuclides in Meteorites

Reedý R. C., Nishisumi K., Arnold J. R.
Solar Cosmic Rays: Fluxes and Reaction Cross Sections

Thursday, March 16, 1989

ORIGIN AND CRYSTALLIZATION OF MARE BASALTS

1:30 p.m., Gilruth 104

Steele A. M.* Haskin L. A.
Apollo 15 Green Glass: The Range of Chemical Compositions in Individual Formational Events

Shearer C. K.* Papieke J. J., Simon S. B., Galbreath K. C., Shimizu N.
A Comparison of Trace Element Characteristics of Picritic Glass Beads from the Apollo 14 and Apollo 17 Sites: Implications for Basalt Petrogenesis and Compositional Variability in the Lunar Mantle

Hughes S. S.* Delano J. W., Schmitt R. A.
Trace Element Signatures in Mare Volcanic and Impact-Melt Glasses from Apollo 14, 15, 16 and 17

Dasch F. J.* Ryder G., Shih C.-Y., Wiesmann H., Bansal B. M., Nyquist L. E.
Time of Crystallization of a Unique A15 Basalt

Apollo 17 High-Ti Basalt Petrogenesis: An Integrated Approach Using Whole-Rock Major and Trace Element Analyses

Neal C. R.* Taylor L. A., Patchen A. D., Ballington M.
Mineralogy and Petrography of 28 New Apollo 17 Basalts

Brophy J. G., Basu A.*
Clinopyroxene Fractionation from an Initial Lunar Magma and Some Eu/Eu* Calculations

POSTER PRESENTATIONS

Colson R. O., Haskin L. A.
Use of Suctionary Electrode Polarography to Measure Reduction Potentials for Eu\(^{3+}\) in Melt of Diopsidic Composition

Engelhardt W. v.* Arndt F., Pankau H. G., Witzsche A.
Açrich Pyroxenes: Metastable Formation in Supercooled Lunar Basaltic and Terrestrial Impact Melts

Neal C. R.* Taylor L. A.
Apollo 14 High-Alumina Basalt Petrogenesis: Isotope Evidence for Assimilation and Fractional Crystallization (AFC)

Trace Element Characteristics of Apollo 14 Volcanic and Impact-Generated Glass Beads

Vetter S. K., Shervais J. W.
A Dynamic Melting Model for the Origin of Apollo 15 Olivine-Normative and Quartz-Normative Mare Basalts

PRESENTED BY TITLE ONLY

Delano J. W.
Buoyancy-Driven Melt Segregation in the Earth's Moon

Farrand W. H.
Highland Contamination and Subsurface Topography in Southern Mare Serenitatis

Hughes S. S., Delano J. W., Schmitt R. A.
Trace Element Chemistry of 74241 and 79221 Mare Volcanic Glasses

Jin Y., Taylor L. A.
Volcanic and Impact Glasses from Mare Fecunditatis

Neal C. R., Taylor L. A.
Definition of a Pristine, Unadulterated urKREEP Composition Using the "K-Frac\(\rightarrow\) REEP-Frac" Hypothesis
Neal C. R. Taylor L. A.
The Barium Problem in Sinchre Liquid Immiscibility: Influence of Melt Composition and Structure on Elemental Partitioning

Neal C. R. Taylor L. A. Patchen A. D.
The "K-Frac/KEEP-Frac" Hypothesis: Evidence for Both KREEP Components in 12033 Ebleite with Post-SLI Fractionation of the KREEP-Frac

Qi Q. Taylor L. A. Zhou X.
Unusual Mantle Xenoliths from Southeast China

Semenova A. S. Tarasov L. S. Kononkova N. N. Solovieva N. V.
VI/1-1 Basalts of Luna 16 and Luna 20: Petrography, Mineralogy and Petrogenesis

Shearer C. K. Papke J. J.
K Plagioclase Removal Responsible for the Negative Fe Anomaly in the Source Regions of Mare Basalts?

Shervais J. W. Netter-S. K.
Melt Rock Components in KREEP Breccia 15205 — Petrography and Mineral Chemistry of KREEP Basalts and Quartz-Normative Mare Basalts

Shih C.-Y. Nyquist L. F.
Isotopic and Chemical Constraints on Models of Aluminous/Mare Basalt Genesis

Shkuratov Yu. G. Bondarenko N. V. Korneenko Yu. V. Stankevich N. P.
Lunar Albedo-Color Diagram: Survey of South-West Part of Lunar Disk

Tarasov L. S. Kudryashova A. D. Semenova A. S. Baryshev V. B. Zolotarev K. V.
Geochemical Identification of VI/1-1 Basalts from Mare Fecunditatis and Apollo Regio Region

Tarasov L. S. Kudryashova A. F. Ulyanov A. A. Baryshev V. B. Zolotarev K. V.
Geochemistry of Rare Elements in Various Types of Basaltic Rocks from Apollo 17 Samples

Thursday, March 16, 1989
ASTERIDS AND SMALL BODIES
3:00 p.m. Gilruth 104

Britt D. J.* Pieters C. M.
Bidirectional Reflectance Characteristics of Black Chondrite Meteorites

Lebofsky L. A.* Jones T. D.
The Nature of Low Albedo Asteroids from 3-µm Spectrophotometry

Vilas F.* Gaffey M. J.
Weak Fe²⁺ - Fe³⁺ Charge Transfer Absorption Features Seen in CM2 Carbonaceous Chondrites and Narrowband Reflectance Spectra of Primitive Asteroids

Gaffey M. J.*
The Abundance of Metal on S-Asteroid Surface: Indications from IRAS 12 and 25 Micron Flux Ratios

Bell J. F.* Piscitelli J. R. Lebofsky L. A.
Dennos: Hydration State from Infrared Spectroscopy

Efford N. D.*
Integral Photometry of Phobos Using Hapke's Equation

Murck S. L.* Head J. W. Efford N. D.
Morphologic Classes of Grooves on Phobos

POSTER PRESENTATIONS

Boice D. C. Huebner W. F. Lambert I. V.
A Three-Dimensional Computer Representation of the Nucleus of Comet Halley

Cloutis E. A.
Olive-Metal Mixtures: Spectral Reflectance Properties and Phase Determinations

Hartis A. W.
The H-G Asteroid Magnitude System: Mean Slope Parameters

McKay C. P. Barucci W. R. Kojro D. R. Church F.
Shock Production of Organic During Cometary Impact

Paolaggi P. Cellino A. Davis D.* Farinella P. Zappalá V.
Asteroid Collisional Evolution: The Holistic Approach
Spohn T., Benkoff J.
Sample Thermal History Models of KOSI Comet Nucleus Simulation Experiments

PRESENTED BY TITLE ONLY

Britt D. I., Pieters C. M., Webb R. S., Pratt S. F.
Relationship of C-Type Asteroids to Dark Meteorites: Evidence for Optical Alteration by Asteroidal Regolith Processes

Hartmann W. K., Tholen D. J., Meech K. J., Cruikshank D. P.
"Asteroid" 2060 Chiron: Status Report on Probable Cometary Activity

Hartmann W. K.
Phobos: Comparison of Small Craters on Phobos and the Moon

Helin E. F.
Interesting Dynamical Aspects of 1989h, a New Short-Period Comet

Hiroi T., Takeda H.
A Method of Converting Reflectance Spectra into Absorption Coefficient Spectra of Mineral Mixtures for Application to Asteroidal Surface Mineralogy

Lucey P. G., Bell J. F., Piscitelli J. R.
High Spectral Resolution Spectroscopy of the Martian Moons

Marov M. Ya., Kolesnichenko A. V., Skorov Yu. V.
The Model of Heat and Mass Transfer in the Cometary Atmosphere

Morgan T. H., Kessler D. S.,
The Average Relative Velocity and Average RMS Relative Velocity of the Meteoroid Population

Mukhin I. M., Dikov Yu. P., Evlanov E. N., Fomenkova M. N., Nazarov M. A., Prilutsky O. F.,
Possible Composition of Halley Comet Dust (St-poor Particles) According to the Data Obtained by Mass-Spectrometer Puma-2

Rajan R. S., ReVelle D. O.,
Identification of Iron meteorites in the Prairie Network Fireball Data

ReVelle D. O., Rajan R. S.,
evaluation of Initial Properties of Iron Meteoroids Using Terrestrial Crater Signatures

Surkov Yu. A., Shcheglov O. P., Ryvkin M. L., Vinogradova O. A.,
Neutron Spectroscopy for Investigation of Small Bodies and Asteroids

Williams J. G., Shoemaker E., Wolfe R.,
Structure in theThemis, Eos, and Koronis Families

Wilson L. Head J. W.,
Dynamics of Groove Formation on Phobos by Ejecta from Stickney

Thursday, March 16, 1989
CHEMICAL AND ISOTOPIC CHARACTERISTICS OF SOLAR SYSTEM MATERIAL
1:30 p.m. Gilruth Gym

Loss R. D.,
A Search for Zinc Isotope Anomalies in CAIs: First Results

Esat I. M.
Anomalous Cr Isotope Fractionation in Terrestrial Spinel Following High Temperature Distillation

Rotaru M., Birck J. L., Allegre C. J.,
Chromium Isotopic Systematics in Carbonaceous Chondrites: 14Cr Deficits in Acet Soluble Phases of Orgueil

Stone J. H., Hutchison I. D., Epstein S., Wasserburg G. J.,
Magnesium and Silicon Isotopic Compositions of Individual Oxide Grains from a Murchison Acid Residue: A Search for Exotic Material

Lin Y. T., Netzky A. H., Hutchison I. D.,
The First Meteoritic Silver Minerals in Peña Blanca Springs Enstatite Achondrite: Assemblages, Compositions and Silver Isotopes

Chen I. H., Wasserburg G. J.
The Pd-Ag Systematics in IVA and IVC Iron Meteorites and in Pallasites

Jones J. H.
Experimental Constraints on the 239/235U-201/204Pb Chronology of Iron Meteorites
PRESENced BY TITI E ONLY

Robert F. Halbout . J. Javoy M.
Non Mass Dependent Isotopic Fractionation: A Survey of Various Experimental Conditions

Tsuchiyama A.
Condensation Experiments in the System Mg-Si-O-H

Weathers D. L. Hutcheon I. D. Graser H. Tombrello T. A. Wasserburg G. J.
Sputtering of Mo: Light Isotope Enrichment and Cosmochemical Implications

Thursday, March 16, 1989
PLANETARY PHYSICS
1:30 p.m. Gilruth 206

Bills B. G.*
Formation of Tharsis and the Obliquity History of Mars

Banerdt W. B.* Golombek M. P.
Long Wavelength Stress Models for Mars: New and Improved

James D. M.* Melosh H. J.
Planetary Response of Thick Lithospheres to Loading

Turcotte D. L.*
Thermal Evolution of Mars and Venus Including Irreversible Fractionation

Schubert G.* Bercovici D. Glatzmaier G.
Mantle Convection and the Thermal Evolution of Mars

Watts A.* Greeley R. Melosh H. J.
Formation of Antipodal Terrains on Icy Satellites

Hillgren V. J.* Melosh H. J.
The Importance of an Elastic Lithosphere for Crater Retention on Icy Bodies

McKinnon W. B.* Benner L. A.
Origin of Ithaca Chasma, Thetis, II: The Importance of the Lithosphere

Durham W. B.* Kirby S. H. Stern L. A. Ragami K. A.
Brittle and Ductile Behavior of Ice/Rock Mixtures

Fischer H., J. Spohn T.*
Thermal-Orbital History Models for a Visco-Elastic Io

Finney S. A.* Williams C. R. Sonett C. P.
The Lunar Orbit in the Late Precambrian

Ross M. N. Thomas J. P.*
Tidal Despinning and the History of Mercury

POSTER PRESENTATIONS

Odczynski M. J. Holloway J. R.
Carbonate Composition and Stability in the Martian Mantle: Preliminary Results
Lithospheric Control in the Development of the Martian Plains Ridges

PRESENTED BY TITLE ONLY

Alexeev V. A.
Periodicity of Recent Terrestrial Volcanism

Koryakin E. D.
Mars: Gravity Field and Deep Structure of the Olympus Mons

Savrov L. A. Kuchik E. K.
Covariance and Harmonic Analysis of the Interaction of Lunar Gravity and Its Surface Characteristics

Solomon S. C.* Head J. W.

Friday, March 17, 1989
MAGMA EVOLUTION IN THE LUNAR HIGHLANDS
8:30 a.m. Gilruth 104

Warren P. H.* Haack H. Rasmussen K. L.
Effects of Megaregolith Insulation on the Sm Nd Coolings Ages of Deep-Crustal Cumulates from the Moon and Large Asteroids

Wänke H.* Dreibus G. Palme H. Siefert S. Spettel B. Stöffler D.
Evolution of the Lunar Magma Ocean as Recorded by the Composition of Plagioclase

Bersch M. G.* Taylor G. J. Keil K.
Ferroan Anorthosites from an Evolving Magma Ocean

James O. B.* Lindstrom M. M. McGee J. J.
Studies of the Distribution of Rare-Earth Elements in the Minerals of Lunar Ferroan Anorthosites

Hess P. C.* Horzempa P. Rutherford M. J.
Fractionation of Apollo 15 KREEP Basalts

Longhi J.*
Is Natural Silicate Liquid Immiscibility Metastable?

Martinez R.* Ryder G
A Granite Fragment from the Apennine Front—Brother of QMD?

Lindstrom M. M.* Marvin U. B. Holmberg B. B. Mittlefehldt D. W.
Geochemistry and Petrology of Recrystallized Gabbroic Breccias from the Apollo 15 Site

Jolliff B. L.* Haskin L. A. Korotev R. L.
Geochemistry of 2-4 mm Particles from 14161 and Implications Regarding Compositional Systematics

Premo W. R.* Tatsumoto M.
Pb Isotopes in Anorthositic Breccia 67075, Revisited: Evidence of a Mare Basalt-Age Component

Compston W.* Williams I. S. Meyer C.
The Problem of Lunar Initial Pb

Meyer C.* Williams I. S. Compston W.
$^{267}\text{Pb}/^{206}\text{Pb}$ Ages of Zircon-Containing Rock Fragments Indicate Continuous Magmatism in the Lunar Crust from 4350 to 3900 Million Years

POSTER PRESENTATIONS

Delaney J. S. Sutton S. Smith J. V.
Trace Elements in Plagioclase from Three Apollo 16 Breccias

Heavilon C. F. Crozaz G.
REE and Selected Minor and Trace Element Microdistributions in Some Pristine Lunar Highland Rocks

Jolliff B. L.
Lithologic Distribution and Classification of 2-4 mm Particles from Apollo 14 Soil 14161

Longhi J.
Fractionation Trends of Evolved Lunar Magmas
McGee J. J.
Mineralogy of the Ferroan Anorthosite Suite: Clues to the Parent Magma Puzzle

Unique Isotopic Signatures of Eclogitic Xenoliths as Evidence of Ancient Plate Tectonics

Niedermann S. Eugster O.
Terrestrial Kr and Xe Contamination in Lunar Anorthosite 60018: Evidence for an Anomalous Adsorption Process

Phinney W. C. Morrison D. A.
REE Distribution Coefficients for Plagioclase: Implications for Anorthosite Melts

Ryder G.
Petrogenesis of Apollo 15 KREEP Basalts

Salpas P. A. Moss B.
A Preliminary Compositional Study of Anorthosite and Related Rocks from the Lower Banded Series of the Stillwater Complex

Shih C.-Y. Nyquist L. E. Dasch E. J. Bansal B. M. Wiesmann H.
Ages of Pristine Lunar Plutonic Rocks and Their Petrographic Implications

Vaniman D. T. Bish D. L. Chipera S. J.
A New Ca-Al-Silicate Mineral from the Moon

PRESENTED BY TITLE ONLY

Lindstrom M. M. Moss B. Mittlfehldt D. W.
Geochemistry of 15205 KREEP Basalt Clasts

McCallum I. S. Rattray G. W.
The Oxygen Fugacity of the Stillwater Complex Magma

Takeda H. Miyamoto M. Mori H.
Mineralogical Resemblance of Y86032-Type Lunar Meteorites to Feldspathic Fragmental Breccia 67016

Friday, March 17, 1989
PLANETARY ACCRETION
8:30 a.m. Gilruth Gym

Boss A. P.
Surface Density and Temperature Profiles in the Early Solar Nebula

Spaute D. S. Davis D. R. Weidenschilling S. J.
Planetesimal Accretion Studies: Effects of Numerical Parameters

Cuzzi J. N. Champney J. Coakley T. Dobrovolskis A.
Particle-Gas Dynamics in the Protoplanetary Nebula

Cameron A. G. W. Benz W.
Possible Scenarios Resulting from the Giant Impact

Melosh H. J. Kipp M. T.
Giant Impact Theory of the Moon's Origin: First 3-D Hydrocode Results

Malcuit R. J. Mehringer D. M. Winters R. R.
Intact Planetoid Capture: Application to Planets Venus and Earth

Ward W. R.
Disc Tides and the Formation of Giant Planet Cores

Stewart G. R.
Planetesimal Swarms Perturbed by a Distant Protoplanet

Patterson C. W.
Gravitational Stirring of Planetesimals by a Planetary Embryo: Implications for Runaway Growth

Namiki N. Matsui T.
Numerical N-Body Simulation of the Accretional Process of the Terrestrial Planets

Mukhin I. M. Gerasimos M. V. Safonova F. N.
Hypervelocity Impacts of Planetesimals as a Source of Organic Molecules and of their Precursors on the Early Earth

Finney S. A. Tonks W. B. Melosh H. J.
Statistical Evolution of Impact Ejecta from Earth—Implication for Transfer to Other Solar System Bodies
Impact Delivery of Organic Molecules to the Early Earth and Implications for the Terrestrial Origins of Life

POSTER PRESENTATION

Gas Capture of Outer Jovian Planets - Critical Mass for Core Instability

PRESENTED BY TITLE ONLY

Runaway Growth of Giant Protoplanets

Was the Moon Formed from the Mantle of a Martian-sized Planetesimal?

Preplanetary evolution and Protonmatter of Venus

Numerical Accuracy in Solving Coagulation Equation for Planetary Accumulation

Mases of Preplanetary Bodies at the Final Stage of Accumulation Evaluated from the Eccentricities and Inclinations of Orbits of the Terrestrial Planets

Friday, March 17, 1989
OUTER SOLAR SYSTEM
8:30 a.m. Gilruth 206

Photochemical Haze on Triton

Regolith Thickness on Large Icy Satellites

Can We Radiometrically Date Cryovolcanic Flows on Icy Satellites

Formation of Ganymede's Crafer Palimpsests

Fluid Volcanism on Miranda and Ariel

Preliminary Densities and Phase Diagram of the Water/NH3 System at P-T Conditions Relevant to the Icy Moons of the Outer Planets

Uranus Satellites: Albedo and Color Maps from Voyager Imaging

The Effect of Alcohol on Sublimation-Driven Flow of SO2 on Io

Vacuum-Weathered Sulfur: Calorimetric Evidence for Unusual Phase Composition

The Thermodynamic Destruction of Ice Grains in Planetary Rings

Chaotic Motion in the Kuiper Belt of Comets: The Delivery of Short-Period Comets

POSTER PRESENTATIONS

New Geologic Maps of the Uranian Satellites Titania, Oberon, Umbriel and Miranda

A Geologic Map and Photomosaic of the Jg-15 Quadrangle of Ganymede
Kargel J. S., Croft S. K.
Rheological Extremes of Cryogenic Liquids on Icy Satellites

Pozio S., Kargel J. S.
The Tectonic and Igneous Evolution of Enceladus

Mulholland J. D., Calame O., Head J. J., Maury A., Pollas C.
Simultaneous Positional Observations of the System of Faint Satellites of Jupiter

Murchie S. L.
The Volcanic and Tectonic History of Ganymede

Nyssen Egger P. A., Consolmagno G. J.
Tectonic Features on Ariel: Evidence for Collapse of a Tidal Bulge

Schenk P. M.
Minas Grooves, the Herschel Impact, and Tidal Stresses

Stern S. A.
The Effects of Stellar Perturbations on the Orbits of the Outer Planets and Objects in the Kuiper-Duncan Disk

Wagner R., Jaumann R., Neukum G.
Preliminary Geologic Map of the ETANA Region Quadrangle (JG-1) of Ganymede

PRESENTED BY TITLE ONLY

Dolginov Sh. Sh.
On the Problem of the Magnetic Fields of Neptune and Uranus

Lejkin C. A., Sanov D. A.
On the Formation of Valhalla Basin (Callisto)

Murchie S. L., Head J. W., Plescia J. B.
The Cratering Record of Ganymede and Callisto: Evidence for the Character of the Crater-forming Impactor Populations

Pappalardo R., Greeley R.
Diapiric Walls as a Model for Bulge and Trough Terrain on Icy Satellites

O'Shaughnessy M., Helfenstein P., Veverka J.
Post-Eclipse and Darkside Brightness Variations on Io

Stooke P. J.
Geology of Minas

Stooke P. J.
Tethys Volcanic and Structural Geology

Stooke P. J.
Volcanism on Callisto

Walker A.
The Nexus of the Nexus
Outer Solar System, Fri. a.m., Rm. 206
Regolith, Thurs. a.m., Rm. 206
Magma Evolution in the Lunar..., Fri. a.m., Rm. 206
Origin & Crystallography..., Thurs. p.m., Gym
Magma Evolution in the Lunar..., Fri. a.m., Rm. 206
Cosmic Dust II, Tues. a.m., Rm. 206
Bolghati & Angevine Consortia..., Tues. a.m., Gym
Ureilites, Ungrouped Chondrites..., Tues. p.m., Gym
Nature & Effects of Impact..., Wed. a.m., Rm. 104
Planetary Accretion, Fri. a.m., Gym
Mars: Water, Canyons, & Life, Tues. p.m., Rm. 104
Cosmic Dust II, Tues. a.m., Rm. 206
Mars: Remote Sensing/Volcanism, Mon. p.m., G104
Mars: Water, Canyons, & Life, Tues. p.m., Rm. 104
Chondrules and Ordinary Chondrites..., Mon. a.m., Gym
Mars: Remote Sensing/Volcanism, Mon. p.m., G104
Mars: Remote Sensing/Volcanism, Mon. p.m., Rm. 206
Mars: Remote Sensing/Volcanism, Mon. p.m., G104
Remote Sensing/Volcanism, Mon. p.m., Gym
Remote Sensing/Volc
Carbonaceous Chondrites, Mon. p.m., Gym

Jin P.
Huang Z.
Houde S. W. F.
Huffman A. R.
Hughes S. S.
Hughes S. S.
Hutchison I. D.
Hutchison I. D.
Hutchison R.
Hutson M.
Hyde T. W.
Hyndman D. A.
Ireland T. R.
Irwin W. M.
Irwin W. M.
Itu K.
Ito K.
Ivanov A. V.
Ivanov B. A.
Ivanov B. A.
Jablonski D.
Jackson A. A.
Jagouz E.
Jagouz E.
James 0. B.
James 0. M.
Jansa L. F.
Jaumann R.
Jaumann R.
Jaumann R.
Javoy M.
Jehanno C.
Jehanno C.
Jesberger E. K.
Ji G. - Y.
Jin G.
Johnson C. A.
Johnson J. R.
Johnson M. C.
Joliff B. L.
Jones 0. H.
Jones 0. H.
Jones 0. H.
Jones 0. H.
Jones T. D.
Jons H.-P.
Joorit C.
Jull A. J. T.
Jurgens R. F.
Kadik A. A.
Kalinina G. V.
Kallennay G. W.
Kallennay G. W.
Kapitonov I. N.
Kargel J. S.
Kasanova N. N.
Kashkarov L. L.
Kashkarov L. L.
Kashkarov V. G.
Kastrov V. G.
Kato I.
Kell K.
Kauhanen K.
Kawashima N.
Keller L. P.
Keller R.
Kennedy A.
Kennedy A.
Kennedy J.
Kennedy J.
Kerridge J. F.
Kessler D. S.
Kiefer W. S.
Kihm Y.
Kim J. S.
Kim S.
Kipp M. E.
Kirby S. H.
Kirkpatrick R. J.
Klein J.
Klein J.
Klock W.
Koch K.
Kochel R. C.
Koehler C.
Koehler C.
Kohl C. P.
Kohehr D. R.
Kolesnichenko A. V.
Kolesnikov E. M.
Kolde M. G.
Kolger D.
Kong D.
Kononova N. V.
Konopka N. N.
Koonz S.
Koppenaal D. W.
Kotzko E. D.
Korotev A.
Korotev A.
Korotev A.
Korotev A.
Korotev A.
Korotkova N. N.
Korotkova N. N.
Korotev R. L.
Korotev R. L.
Korotkova N. N.
Korotkov N. N.
Korotkin M. A.
Kotelnikov A.
Kozak R. C.
Kozak E. C.
Kozak E. C.
Kozlowski R. W.
Kozul J. M.
Kreslavsky M. A.
Krivets Murmuth R. W.
Kryuchkov V. P.
Ksanfomaliti L.
Kuchik E. K.
Kudrin L. V.
Kudryashova A. F.
Kuchynski S. M.
Kurat G.
Kushiro I.
Kuiper G. D.
Lai D.
Lal D.
Lambert J. V.
Lancaster N.
Langevin Y.
Lasutina E. P.
Lauer H. V.
Laughlin J. R.
Lau J. C.
Lau J. K.
Lau J. C.
Lawrence R. M.
Lavrielle B.
Lavrushina A. K.
Lavrushina A. K.
Le L.
Lebofsky L. A.
Lebofsky L. A.
Leedlow M.
Lee S. W.
Lehner M.
Leith A. C.
Leith A. C.
Levchenko G. M.
Lewis R. S.
Liffman K.
Liffman K.
Lin Y. T.
Linrrom D. J.
Lindstrom D. J.
Lindstrom D. J.
Lindstrom D. J.
Lindstrom D. M.
Lindstrom M. M.
Lindstrom M. M.
Lindstrom M. M.
Lin M. H.
Linnett T. W.
Lipschutz M. E.
Lipschutz M. E.
Liu Y.-G.
Liu Y.-G.
Lofgren G. E.
Longhi J.
Loss J.
Lott R. D.
Lucchitta B. K.
Lucey P. G.
Lucey P. G.
Lucey P. G.
Lucey P. G.
Planetary Physics, Thurs. p.m., Rm. 206
Venus Geophysics, Wed. a.m., Rm 104
Origin & Crystalization, Thurs. p.m., Rm. 104
CAL's, Wed. a.m., Gym
Chondrules and Ordinary Chondrites, Mon. a.m., Gym
Chemical & Isotopic Characteristics, Thurs. p.m., Gym
Mars: Water, Canyons, & Life, Thurs. p.m., Rm. 104
Cosmic Rays, Thurs. a.m., Rm. 206
Shock Metamorphism & Terrestrial Craters, Mon. p.m., Rm. 206
Asteroids & Small Bodies, Mon. p.m., Rm. 104
Mars Geology, Tues. a.m., Rm. 104
Mars Remote Sensing, Mon. a.m., Rm. 104
CAL's, Wed. a.m., Gym
Mars Remote Sensing, Mon. a.m., Rm. 104
Chondrules and Angrite Consortia, Tues. a.m., Gym
Chondrules and Ordinary Chondrites, Mon. a.m., Gym
Regolith, Thurs. a.m., Rm. 206
Ureilites, Ungrouped Chondrites, Tues. p.m., Gym
Cosmic Dust III, Tues. a.m., Gym
Chemical & Isotopic Characteristics, Thurs. p.m., Gym
Carbonaceous Chondrites, Mon. p.m., Gym
Mars: Remote Sensing/Volcanism, Mon. p.m., GI04
Bologhichi & Angrite Consortia, Tues. a.m., Gym
Asteroids & Small Bodies, Thurs. p.m., Rm. 104
Lunar Geology, Processes & Resources, Thurs. p.m., Gym
Mars Remote Sensing, Mon. a.m., Rm. 104
Outer Solar System, Fri. a.m., Rm. 104
Mars Remote Sensing, Mon. a.m., Rm. 104
Mars Remote Sensing/Volcanism, Mon. p.m., GI04
Chondrules and Ordinary Chondrites, Mon. a.m., Gym
Asteroids & Small Bodies, Thurs. p.m., Rm. 104
Cosmic Dust II, Mon. a.m., Gym
Lunar Geology, Processes & Resources, Thurs. p.m., Gym
Mars Remote Sensing, Mon. a.m., Rm. 104
Mars Remote Sensing, Mon. a.m., Rm. 104
Outer Solar System, Fri. a.m., Rm. 104
Chondrules and Ordinary Chondrites, Mon. a.m., Gym
Carbonaceous Chondrites, Mon. p.m., Gym
Cosmic Dust II, Mon. a.m., Gym
Mars: Remote Sensing/Volcanism, Mon. p.m., GI04
Bologhichi & Angrite Consortia, Tues. a.m., Gym
Asteroids & Small Bodies, Thurs. p.m., Rm. 104
Mars Remote Sensing, Mon. a.m., Rm. 104
Mars Remote Sensing, Mon. a.m., Rm. 104
Regolith, Thurs. a.m., Rm. 206
Mars Remote Sensing, Mon. a.m., Rm. 104
Mars Remote Sensing, Mon. a.m., Rm. 104
Outer Solar System, Fri. a.m., Rm. 104
Chondrules and Ordinary Chondrites, Mon. a.m., Gym
Carbonaceous Chondrites, Mon. p.m., Gym
Cosmic Dust II, Mon. a.m., Gym
Interstellar Grains/Dust, Tues. a.m., Rm. 206
Chemical & Isotopic Characteristics, Thurs. p.m., Gym
Bologhichi & Angrite Consortia, Tues. a.m., Gym
Cosmic Dust II, Mon. a.m., Rm. 206
Mars Remote Sensing, Mon. a.m., Rm. 104
Mars Remote Sensing, Mon. a.m., Rm. 104
Outer Solar System, Fri. a.m., Rm. 206
Mars Remote Sensing, Mon. a.m., Rm. 104
Ureilites, Ungrouped Chondrites, Tues. p.m., Gym
Planetary Differentiation, Mon. a.m., Bldg. 30
Cosmic Dust I & II, Mon. a.m., Gym
Mars Remote Sensing, Mon. a.m., Rm. 104
Mars Remote Sensing, Mon. a.m., Rm. 104
VC. J.
VC. J.
M.
M.
A. A.
A. A.
J.
J.
J.
J.
R.
M.
Regolith, Thurs. a.m., Rm. 206
Mackay D. S.

Bholghati & Angrite Consortia ... , Tues. a.m., Gym
McKay G.

Carbonaceous Chondrites, Mon. p.m., Gym
Mckinnon W. B.

Mars, p.m., G104
McKinnon W. B.

Mars, a.m., Gym
McKinnon W. B.

Carbonaceous Chondrites, Mon. p.m., Gym
McKinnon W. B.

Carbonaceous Chondrites, Mon. p.m., Gym
McKinnon W. B.

Mars, a.m., Gym
McKinnon W. B.

Mars, p.m., G104
McKinnon W. B.

Mars, a.m., Gym
McKinnon W. B.

Mars, p.m., G104
McKinnon W. B.

Mars, a.m., Gym
McKinnon W. B.

Mars, p.m., G104
McKinnon W. B.

Mars, a.m., Gym
McKinnon W. B.

Mars, p.m., G104
McKinnon W. B.

Mars, a.m., Gym
McKinnon W. B.

Mars, p.m., G104
McKinnon W. B.

Mars, a.m., Gym
McKinnon W. B.

Mars, p.m., G104
McKinnon W. B.

Mars, a.m., Gym
McKinnon W. B.

Mars, p.m., G104
McKinnon W. B.

Mars, a.m., Gym
McKinnon W. B.

Mars, p.m., G104
McKinnon W. B.

Mars, a.m., Gym
McKinnon W. B.

Mars, p.m., G104
McKinnon W. B.

Mars, a.m., Gym
McKinnon W. B.

Mars, p.m., G104
McKinnon W. B.

Mars, a.m., Gym
McKinnon W. B.

Mars, p.m., G104
McKinnon W. B.

Mars, a.m., Gym
McKinnon W. B.

Mars, p.m., G104
McKinnon W. B.

Mars, a.m., Gym
McKinnon W. B.

Mars, p.m., G104
McKinnon W. B.

Mars, a.m., Gym
McKinnon W. B.

Mars, p.m., G104
McKinnon W. B.

Mars, a.m., Gym
McKinnon W. B.
<table>
<thead>
<tr>
<th>Name</th>
<th>Title</th>
<th>Room</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schultz P. H.</td>
<td>Shock Metamorphism & Terres...., Mon. p.m., Rm. 206</td>
<td></td>
</tr>
<tr>
<td>Schultz R.</td>
<td>Mars: Water, Canyons, & Life, Tues. p.m., Rm. 104</td>
<td></td>
</tr>
<tr>
<td>Scott D. H.</td>
<td>Mars Geology, Tues. a.m., Rm. 104</td>
<td></td>
</tr>
<tr>
<td>Scott E. R. D.</td>
<td>Interstellar Grains/Oust, Tues. a.m., Rm. 206</td>
<td></td>
</tr>
<tr>
<td>Sears D. W. G.</td>
<td>Chondrules and Ordinary Chondrites ... , Tues. p.m., Gym</td>
<td></td>
</tr>
<tr>
<td>See T. H.</td>
<td>Shock Metamorphism & Terres...., Mon. p.m., Rm. 206</td>
<td></td>
</tr>
<tr>
<td>Shaller P. J.</td>
<td>Origin & Crystallization...., Thurs. p.m., Rm. 104</td>
<td></td>
</tr>
<tr>
<td>Sharpston V. L.</td>
<td>Bholghati & Angrite Consortia ... , Thurs. a.m., Gym</td>
<td></td>
</tr>
<tr>
<td>Shearer C. K.</td>
<td>Venus Geophysics, Wed. a.m., Rm. 104</td>
<td></td>
</tr>
<tr>
<td>Sherman S. B.</td>
<td>Planetary Accretion, Fri. a.m., Gym</td>
<td></td>
</tr>
<tr>
<td>Shostak E. M.</td>
<td>Venus Geophysics, Wed. a.m., Rm. 104</td>
<td></td>
</tr>
<tr>
<td>Skinner W. R.</td>
<td>Venus Geophysics, Wed. a.m., Rm. 104</td>
<td></td>
</tr>
<tr>
<td>Skypeck A.</td>
<td>Venus Geophysics, Wed. a.m., Rm. 104</td>
<td></td>
</tr>
<tr>
<td>Smrekar S.</td>
<td>Venus Geophysics, Wed. a.m., Rm. 104</td>
<td></td>
</tr>
<tr>
<td>Solomon S. C.</td>
<td>Venus Geophysics, Wed. a.m., Rm. 104</td>
<td></td>
</tr>
<tr>
<td>Sotin C.</td>
<td>Venus Geophysics, Wed. a.m., Rm. 104</td>
<td></td>
</tr>
<tr>
<td>Spaute D. S.</td>
<td>20th Anniversary Plenary Review, Wed. p.m., Bldg. 2</td>
<td></td>
</tr>
<tr>
<td>Spohn T.</td>
<td>Lunar Geology, Processes & Resources, Tues. p.m., Rm. 206</td>
<td></td>
</tr>
<tr>
<td>Spudis P.</td>
<td>Mars: Water, Canyons, & Life, Tues. p.m., Rm. 104</td>
<td></td>
</tr>
<tr>
<td>Squyres S. W.</td>
<td>Mars Remote Sensing, Mon. a.m., Rm. 104</td>
<td></td>
</tr>
<tr>
<td>Stansberry J. A.</td>
<td>Magma Evolution in the Lunar... , Fri. a.m., Rm. 104</td>
<td></td>
</tr>
<tr>
<td>Stecher O.</td>
<td>Nature & Effects of Impact ..., Wed. a.m., Rm. 206</td>
<td></td>
</tr>
<tr>
<td>Steele A. M.</td>
<td>Carbonaceous Chondrites, Mon. p.m., Gym</td>
<td></td>
</tr>
<tr>
<td>Steele I. M.</td>
<td>Shock Metamorphism & Terres...., Mon. p.m., Rm. 206</td>
<td></td>
</tr>
<tr>
<td>Stern A. S.</td>
<td>Chemcial & Isotopic Characteristics..., Thurs. p.m., Rm. 206</td>
<td></td>
</tr>
<tr>
<td>Stewart G. R.</td>
<td>Shock Metamorphism & Terres...., Mon. p.m., Gym</td>
<td></td>
</tr>
<tr>
<td>Stefan E. R.</td>
<td>Chemical & Isotopic Characteristics..., Thurs. p.m., Rm. 206</td>
<td></td>
</tr>
<tr>
<td>Staffoller D.</td>
<td>Solar System, Fri. a.m., Rm. 206</td>
<td></td>
</tr>
<tr>
<td>Stone J.</td>
<td>Planetary Differentiation, Mon. p.m., Bldg. 30</td>
<td></td>
</tr>
<tr>
<td>Strickland E L. 111</td>
<td>Planetary Differentiation, Mon. p.m., Bldg. 30</td>
<td></td>
</tr>
<tr>
<td>Strom R. G.</td>
<td>Planetary Physics, Thurs. p.m., Rm. 206</td>
<td></td>
</tr>
<tr>
<td>Sutton S.</td>
<td>Chemical & Isotopic Characteristics..., Thurs. p.m., Rm. 206</td>
<td></td>
</tr>
<tr>
<td>Swindle T. D.</td>
<td>Southern Cosmology, Mon. p.m., Gym</td>
<td></td>
</tr>
<tr>
<td>Takeda H.</td>
<td>Chemical & Isotopic Characteristics..., Thurs. p.m., Rm. 206</td>
<td></td>
</tr>
<tr>
<td>Takeda H.</td>
<td>Sholes, a.m., Rm. 206</td>
<td></td>
</tr>
<tr>
<td>Taylor G. J.</td>
<td>20th Anniversary Plenary Review, Wed. p.m., Bldg. 2</td>
<td></td>
</tr>
<tr>
<td>Tera F.</td>
<td>Mars Remote Sensing, Mon. a.m., Rm. 104</td>
<td></td>
</tr>
<tr>
<td>Thiemens M. H.</td>
<td>Planetary Differentiation, Mon. p.m., Bldg. 30</td>
<td></td>
</tr>
<tr>
<td>Thomas P. J.</td>
<td>Planetary Differentiation, Mon. p.m., Bldg. 30</td>
<td></td>
</tr>
<tr>
<td>Thomas P. J.</td>
<td>Planetary Physics, Thurs. p.m., Rm. 206</td>
<td></td>
</tr>
<tr>
<td>Thomas P. J.</td>
<td>Shock Metamorphism & Terres...., Mon. p.m., Rm. 206</td>
<td></td>
</tr>
<tr>
<td>Toneoka K.</td>
<td>20th Anniversary Plenary Review, Wed. p.m., Bldg. 2</td>
<td></td>
</tr>
<tr>
<td>Tonks W. B.</td>
<td>Mars: Water, Canyons, & Life, Tues. p.m., Rm. 104</td>
<td></td>
</tr>
<tr>
<td>Torbett M. W.</td>
<td>Planetary Physics, Thurs. p.m., Rm. 206</td>
<td></td>
</tr>
<tr>
<td>Traub S. G.</td>
<td>Planetary Differentiation, Mon. p.m., Bldg. 30</td>
<td></td>
</tr>
<tr>
<td>Treiman A. H.</td>
<td>Planetary Physics, Thurs. p.m., Rm. 206</td>
<td></td>
</tr>
<tr>
<td>Tsou P.</td>
<td>Planetary Physics, Thurs. p.m., Rm. 206</td>
<td></td>
</tr>
<tr>
<td>Turcotte D. L.</td>
<td>Planetary Geometry, Mon. p.m., Bldg. 30</td>
<td></td>
</tr>
<tr>
<td>Turnier G.</td>
<td>Planetary Differentiation, Mon. p.m., Bldg. 30</td>
<td></td>
</tr>
<tr>
<td>Tyburczy J. A.</td>
<td>Planetary Physics, Thurs. p.m., Rm. 206</td>
<td></td>
</tr>
<tr>
<td>Wickery A. M.</td>
<td>Planetary Differentiation, Mon. p.m., Bldg. 30</td>
<td></td>
</tr>
<tr>
<td>Vilas F.</td>
<td>Nature & Effects of Impact ..., Wed. a.m., Rm. 206</td>
<td></td>
</tr>
<tr>
<td>Virag A.</td>
<td>Solar System, Fri. a.m., Rm. 206</td>
<td></td>
</tr>
<tr>
<td>Vogt S.</td>
<td>Magma Evolution in the Lunar... , Fri. a.m., Rm. 104</td>
<td></td>
</tr>
<tr>
<td>Walker R. M.</td>
<td>Magma Evolution in the Lunar... , Fri. a.m., Rm. 104</td>
<td></td>
</tr>
<tr>
<td>Whitten R. A.</td>
<td>Magma Evolution in the Lunar... , Fri. a.m., Rm. 104</td>
<td></td>
</tr>
<tr>
<td>Ward W. R.</td>
<td>Magma Evolution in the Lunar... , Fri. a.m., Rm. 104</td>
<td></td>
</tr>
<tr>
<td>Warren P. H.</td>
<td>Magma Evolution in the Lunar... , Fri. a.m., Rm. 104</td>
<td></td>
</tr>
<tr>
<td>Warren P. H.</td>
<td>Magma Evolution in the Lunar... , Fri. a.m., Rm. 104</td>
<td></td>
</tr>
<tr>
<td>Wasson J. T.</td>
<td>Magma Evolution in the Lunar... , Fri. a.m., Rm. 104</td>
<td></td>
</tr>
<tr>
<td>Weinbruch S.</td>
<td>Magma Evolution in the Lunar... , Fri. a.m., Rm. 104</td>
<td></td>
</tr>
<tr>
<td>Weisberg M. K.</td>
<td>Magma Evolution in the Lunar... , Fri. a.m., Rm. 104</td>
<td></td>
</tr>
<tr>
<td>Wentworth S. J.</td>
<td>Magma Evolution in the Lunar... , Fri. a.m., Rm. 104</td>
<td></td>
</tr>
<tr>
<td>Wetherill G. V.</td>
<td>Magma Evolution in the Lunar... , Fri. a.m., Rm. 104</td>
<td></td>
</tr>
<tr>
<td>Wichman R.</td>
<td>Magma Evolution in the Lunar... , Fri. a.m., Rm. 104</td>
<td></td>
</tr>
<tr>
<td>Wieler R.</td>
<td>Magma Evolution in the Lunar... , Fri. a.m., Rm. 104</td>
<td></td>
</tr>
<tr>
<td>Williams J. H.</td>
<td>Magma Evolution in the Lunar... , Fri. a.m., Rm. 104</td>
<td></td>
</tr>
<tr>
<td>Williams S. H.</td>
<td>Magma Evolution in the Lunar... , Fri. a.m., Rm. 104</td>
<td></td>
</tr>
<tr>
<td>Zolensky M.</td>
<td>Magma Evolution in the Lunar... , Fri. a.m., Rm. 104</td>
<td></td>
</tr>
<tr>
<td>Zolensky M.</td>
<td>Magma Evolution in the Lunar... , Fri. a.m., Rm. 104</td>
<td></td>
</tr>
</tbody>
</table>