Autonomous Navigation and Mobility

David S. Bayard

Jet Propulsion Laboratory
California Institute of Technology

SBAG 4: January 24-26, 2011
Small Body Exploration Trends

• Recent trends in planetary exploration are placing increased emphasis on small body exploration
 – Asteroids, comets, NEOs, etc.

• Examples of NASA small body encounters
 – DS1, Star Dust, Deep Impact, Dawn, NEAR
 – AutoNAV used for all JPL Autonomous Navigation functions

• RAISING THE BAR: New challenges associated with small body surface sampling and especially sample return

• Existing capabilities
 – JAXA’s Hayabusa (asteroid surface sampling)
 – ESA’s Rosetta (comet surface sampling)
Example Small Body Sample Return Scenario

Staging Altitude (10 km)

Descent

Pre-Contact Altitude (50 m)

Contact Altitude (4 m)

Touch&Go Sampling

Ascent
Needed Capabilities

• Autonomy for near-surface operations
 – Ground commanding is not possible (two-way light times ~1 hr)
 – Proximity operations performed at several meters above surface
 – Potential outgassing and non-grav forces

• On-Board Landmark-Based-Navigation
 – Determination of target-relative position and velocity from camera images
 – Shape modeling, rendering, on-board maps

• Real-time image-based feedback control

• 6DOF control of touch-and-go (TAG) sampling event
 – Descend along guided path
 – Achieve prescribed guidance condition for sampling (position/orientation, velocity, contact force profile)
 – Recover from sampling disturbances and induced attitude rates
 – Ascend from surface to safe altitude
Benefits from GN&C Autonomy

• Without Autonomous GN&C, small body landing error approx 100-200 m in diameter on surface with 1-2 m/s velocity dispersions
 – Example: NEAR landing on Eros had 500 m error ellipse with 1.8 m/s touchdown velocity

• Drives the need to find wide hazard-free regions for landing sites (> 200 m)

• On-board autonomous GN&C can reduce errors to approx 5-10 m in diameter with 3-5 cm/s velocity error
 – Enables much larger class of small body missions
Recent JPL Developments

AutoGNC

- AutoGNC product developed as extension of AutoNAV product to handle full 6DOF (rotation and translation), with VML autonomy engine, and capability for near-surface operations, contact, and sample-return
- Product of JPL internal R&TD funding and other project investments (New Millennium DS1, Deep Impact, etc.)
- Level-of-readiness currently at TRL 5

Goal

- Provide “off-the-shelf” on-board autonomous GN&C capability that can be systematically integrated into emerging comet and asteroid missions
An AutoGNC Flight Integration Strategy

AutoGNC (integrated C-monolith)

- **AutoNav**
 - Calc TCM
 - Orbit Determination
 - Nav and OpNav Gofers

- **Guidance and Control**
 - NonLinear Path Planner?
 - Docking Controller?
 - Attitude Estimator
 - Attitude Profiler
 - Attitude Controller
 - Thrust Allocator

- **External flight element**
 - Flight Director
 - Picture Manager
 - OD Manager
 - Maneuver Manager
 - Attitude Manager
 - Trajectory Manager
 - Fault Protection & Monitors

- **OBIRON**
 - Landmark Tracking
 - Altimeter Model

Requests for S/C action
- Thruster commands
- Thrust directives
- Fault Status Flags

“Raw” data inputs
- Radio Metric Data
- Command Directives
- Star Tracker Handler
- IMU Handler
- Ranger Handler
- Contact Sensor Handler
- Camera Handler

VML Language Constructs
- Altimeter Model
- CMD
- TLM
- Clock
- Messaging

C-Code flight Elements
- Resident RTOS or OLVM-Derived Elements

Onboard AutoGNC Function
- Onboard AutoGNC Function (speculative)

Currently (4/09) non-C code elements hosted in DSENDS
- Resident FDIR

Requests for S/C action
- Thruster commands
- Thrust directives
- Fault Status Flags
Simulated Scenario: Descent, TAG and Ascent

- **Safe Flyby** Trajectory ~1km range
- Altimeter lock-up
- Commit Maneuver
- Surface Intersecting Trajectory
- Target-Site relative rate nulling maneuver

- 40 km Range in Station-keep “Start Zone”
- GN&C statistical trajectory correction opportunities
- “Safe Flyby” Trajectory
- ~70m range
- Passive TAG-abort Trajectory
- Earth Radiates “Okay to Commit to TAG”
- Target-Site relative rate nulling maneuver
- Two vertical correction opportunities with dominant deterministic “thrust-down” components to reduce exhaust contamination of surface.
- Terrain-relative Nav (Optical Nav)
- Post-TAG departure ~70m range
- ZOOM

TAG Target Site OpNav Pictures
Example Image from Op-nav camera
AutoGNC Performance
Spacecraft Descent, Touch&Go Sampling and Ascent

Magnitude of Position Difference (Inertial)

Position errors at contact below 6 meters with less than 3 cm/sec velocity error
Navigation Images Used for Landmark Tracking

On-Board feature recognition using 3-D features and stored image maps
On-Board Optical Navigation Issues

- Landmark tracking function has to deal with 4 order-of-magnitude changes in image scale (e.g., 10 km to 1 m)
- The smoothest and safest regions for landing are often the least informative for camera-based navigation
- Typically >100 landmarks are available per image for processing
- Given typical CPU constraints of allowing 10% of a RAD 750, landmark-based navigation can process approximately 1 image every 15 seconds
 - Assumes processing is limited to 10 landmarks per image
- Just adequate to perform autonomous navigation to support small body landing errors at the 5-10 m landing error level
- Higher imaging rates and more landmarks-per-image are desired to mitigate risk (false matches, low lighting, sparsity of features, scale changes, viewing angle changes, and map errors)
 - Alternative Architectures:
 - Dedicated processor for GN&C computations
 - Dedicated hardware for image processing/correlation
 - Faster spacecraft CPU
Control Challenges for TAG Sampling

- Achieve prescribed guidance condition for sampling (position/orientation, velocity)

- Achieve prescribed sampling force profile on end-effector

- 6DOF control to implement ascent burn while recovering from sampling disturbances and induced attitude rates

- Minimize control interactions with flexible solar panels

- Avoid surface contact with any part of spacecraft

- Tolerate over 4 orders of magnitude uncertainty in strength/stiffness of surface material

- Avoid thruster plume contamination of sampling area
CONCLUSIONS

• New GN&C challenges are associated with small body surface proximity operations, contact, and sampling

• Autonomous GN&C capability with landmark-based navigation drives landing errors down from 100-200 m (without) to 5-10 meters (with)
 – Enables much larger class of small body missions
 – Will become essential as mission goals become more ambitious

• Very few Autonomous GN&C systems in existence
 – Hayabusa (JAXA) – experimental - not exercised for mission purposes
 – Rosetta (ESA) – to be exercised at comet 67P/Churyumov-Gerasimenko in 2014

• JPL’s AutoGNC technology product developed from internal R&TD funding and other project investments
 – Level-of-readiness currently at TRL 5 (AutoNav capability at TRL 9)
 – Continued development for infusion into emerging small body missions
APPENDIX
Integrated 6DOF GN&C Solution

• Near-surface operations and autonomous sampling couple spacecraft attitude and translation

• An integrated 6DOF GN&C capability simultaneously optimizes over attitude and translation degrees-of-freedom
 – Thrust allocation (use of same thrusters)
 – Close-range maneuvering (geometric constraints, camera/antenna pointing, avoiding surface-S/C contact)
 – Rejection of sampling-induced reaction force & torque disturbances (a 6-DOF control problem)
 – Flex-solar-panel interactions with control system
 – Response to active environmental disturbances (e.g., active vents, dust, outgassing)
 – A fully integrated 6DOF GN&C architecture is currently nonstandard for exploration spacecraft