Radioisotope Power Systems: Pu-238 and ASRG status and the way forward

Ralph L. McNutt, Jr.

Space Department Johns Hopkins University Applied Physics Laboratory Laurel, MD 20723 USA

10th Meeting of the **NASA Small Bodies Assessment Group**

Outer Planet Assessment Group Meeting

8 January 2014 Capitol Ballrooms A and B **Embassy Suites Washington DC Convention Center Hotel**

13 January 2014 **Drake Building** Tucson, AZ

University of Arizona The Johns Hopkins University APPLIED PHYSICS LABORATORY

10:40 AM - 11:00 AM

3:45 PM - 4:00 PM EST

RPS use and infrastructure costs are still emerging from the Cold War years

- Radioisotope Power Systems (RPS) are an enabling technology for providing power to satellite systems in cases for which solar power is impractical or absent altogether
 - They have been used in space as well other applications, in the U.S. and in Russia
 - Many other applications have been phased out
- Their technical origins stretch back to research on the Manhattan Project
- They were invented in the U.S. about 55 years ago and we have invested ~\$4.7 billion (FY2011) to date in perfecting this technology
- There are also in lightweight radioisotope heater units (LWRHUs) used to keep spacecraft components warm

First use: Transit 4A in 1961

- Bench check out and installation of the SNAP 3B7 radioisotope power supply
- Launch on Thor Able-Star 29 June 1961

Origin of RPSs in the U.S. was with Po-210 fuel

- Research began at Mound Facility in Miamisburg, Ohio
 - Operated from 1948 to 2003
 - 182 acres
- Polonium-210 was investigated as an intense source of alpha particles beginning in 1942
 - 1954 program to generate electricity from Po-210
 - 1956 conceptual design using a mercury boiler
 - 1958 RTG powered by polonium-210
- Po-210
 - 120 watts per gram
 - Half-life of 138 days limited usefulness for space probe missions
 - Research and production at Mound phased out in 1971
- Gadolinium polonide (GdPo) developed as fuel

Switch from Po-210 to Pu-238 for Long-Lived Missions

 Mid 1950s – Plutonium-238 research and development activity began at Mound

- 1959 Initial research concerning plutonium-238 was transferred to Mound from Lawrence Livermore National Laboratory
- 1960 First reduction of metallic plutonium-238 achieved at Mound Research and development relating to the application of plutonium-238 as a radioisotopic heat source material followed
 - Materials research
 - Development of processes for the production of heat source materials
 - Development of fabrication and metallurgical technology to ensure the containment and stability of heat source materials
 - Research and development activities were on the design of RTG systems for the various applications of this technology

Pu-238 usage in space – U.S. standard packaging is a given

Usage has been standardized largely due to rigorous and comprehensive safety analyses

- **Power:** General Purpos Heat Source (GPHS) Step-2, each containing pellets of Pu-238 in the chemical form PuO₂ (nominal 150 g)
- **Heating**: Light Weight Radioisotope Heating Unit (LWHRU), each containing 1 pellet of Pu-238 in the chemical form PuO₂ (nominal 2.7 g)

GPHS for Curiosity (from INL)

Pu-238 usage in space – Quantity

 No other isotope has been used by the U.S. to power spacecraft

N.B. The costs directly supplied by DOD and NASA to these programs are *not* captured in these numbers

NASA usage: Nimbus B-1 through Curiosity 115 kg in 44 years = 2.6 kg/yr on average Other U.S. spacecraft have also used Pu-238

Production and separation of Pu-238 were carried out at the Savannah River facility in South Carolina – Industrial Scale

K-reactor used for production

- First went critical in 1954
- To inactive status in 1988
- Cooling tower built 1990
- Operated with cooling tower in 1992
- On cold standby 1993
- Shutdown 1996
- Reactor building converted to storage facility 2000
- Cooling tower demolished 2010

H-canyon used for fuel reprocessing

- Only hardened nuclear chemical separations plant still in operation in the U.S.
- Radioactive operations begin in 1955

HB-line

- Production begins of Pu-238 for NASA use 1985
- ~300 kg of Pu-238 produced 1959-1988

New Pu-238 Supply Project for NASA is more modest

SBAG
SMALL BODIES ASSESSMENT GROUP

OPAG
Outer Planets Assessment Group

- Production is targeted at ~1.5 kg "plutonium product" per year
- Facilities used include
 - Idaho National Laboratory (INL) storage of NpO₂ and irradiation of targets at ATR (see below)
 - Oak Ridge National Laboratory (ORNL)
 - Remove Pa-233 (312 keV γ-ray is worker-dose issue)
 - Fabricate reactor targets
 - Irradiate at High Flux Intensity Reactor (HFIR) or ship to INL for irradiation at the Advanced Test Reactor (ATR) –
 - Process in hot cells at ORNL Radiochemical Engineering Development Center (REDC)
 - Remove and purify Pu; change to oxide; and do O-16 exchange for processing by Los Alamos National Laboratory (LANL) into fuel pellets for GPHSs or LWRHUs

Hot Cell at ORNL REDC

10% conversion per campaign – to limit Pu-239 production

100 target per campaign to make 300 to 400 g of plutonium product

"Plutonium product" is **NOT** the same as Pu-238

Nuclear Isotope Production Issues (Physics)

SBAG
SMALL BODIES ASSESSMENT GROUP

OPAG
Outer Planets Assessment Group

- When producing isotopes in a reactor, multiple channels as dictated by nuclear physics come into play – so no product is "clean"
- Once made, all isotopes begin decaying at physics-dictated rates and sometimes producing new radiological hazards
- Only chemical processing of plutonium is "practical" – isotopic separation is not
- Typical Pu-238 production at Savannah River – once reprocessed (Rinehart, 2001)

- The only "controls" are
 - Initial target composition
 - Reactor and target geometry
 - Exposure time
- Particular hazards in making Pu-238:
 - Protactinium-233 (Pa-233) 312 keV γ, mitigate by chemical cleanup of Np-237 after removal from storage
 - Thallium-208 (TI-208) 2.61 MeV γ; mitigate by minimizing Pu-236

Isotope	Mass %
Pu-236	≤ 1 µg / g
Pu-238	83.50
Pu-239	14.01
Pu-240	1.98
Pu-241	0.37
Pu-242	0.14

Older Fuel has less power density

- Pu-239 in particular decays less slowly than Pu-238
- Once the Pu is produced, the initial fractions are "frozen in"
- As the fuel ages, the relative fraction of Pu-238 decreases and that cannot be changed

Time Variation of Nominal Pu-238 Production Assay

GPHS fuel clad design is driven by metallurgy of the iridium alloy of the clads

Nominal "plutonium product" loading is 150 g

Design thermal output is 62.5 W

 \rightarrow 62.5 W / 150 g = 0.42 W/g

Pu-238 isotope produces 0.56 W/g

Hence, a fuel clad contains roughly 0.42/0.56 x 150 g ~ 110 g of Pu-238 isotope

Details matter – this is the maximum thermal power available

U.S. RPS Missions

- The United
 States has
 launched 46
 RTGs on 27
 missions
- 35 RTGs have been used on 18 NASA missions
- No mission has failed due to an RTG

Russian RPS Missions

- Lunokhod 1 and 2 (Yttrium polonide using Po-210)
- Mars 96 ("Angel" RHU and RTG using Pu-238)

RHUs ensure survival during lunar night and provide compact heater and power sources for small autonomous stations (SAS) and penetrators on planetary probes

8.5 W_{th} and 200 mW_e «Angel» RHU and RTG employed on Mars-96

Chinese RPS Missions

- Chang'e-3 and Yutu (Pu-238 RHUs)
- Lunar Lander and Rover

Chang'e-3 lander from Yutu rover

RHUs ensure survival during lunar night

Yutu rover from Chang'e-3 lander

RHU with APXS on Yutu -

image credited to CLEP at 2011-13 www.spaceflight101.com - Patrick Blau

Convertor Technologies Have Proven Difficult to Develop

- Requirements are high reliability and high thermal-to-electrical energy conversion
- SNAP 1 concept
- In the U.S. emergence of thermoelectric materials were chosen over dynamic systems (Rankine - cycle mercury boiler was baselined for SNAP-1) for reliability
- PbTe and TAGS materials followed by higher efficiencies with SiGe couples operating at higher temperatures

- Other approaches were abandoned due to material difficulties
 - Selenide thermoelectrics
 - Alkali metal thermal-to-electric converter (AMTEC)
- Still other approaches continue to show promise, but need larger infusions of research funds to further the technical readiness level of the the technology
 - Skutterudites and other materials
 - Advanced Stirling Radioisotope Generator (ASRG) has been the most promising dynamic system to date

AMTEC cell

Long-lasting Electrical Power– with No Maintenance

Missions Enabled: Long-Term Lunar Presence

- Surveyor was originally planned to employ RTGs so as to survive the lunar night
 - The SNAP 11 was to use Curium-242 to allow the spacecraft to function for 130 days
 - Dropped due to cost
- The Apollo Lunar Surface Experiment Package (ALSEP) was deployed on Apollo 12, 14, 15, 16, and 17
 - The SNAP 27 used Plutonium-238
 - Assembly by an astronaut was required following landing
 - The units were turned off long after the last landing due to cost constraints (30 Sep 1977)

ALSEP and SNAP 27 deployed on Apollo 14

Missions Enabled: The surface of Mars

SNAP 19 RTGs for power:

Viking 1 and 2 landers

RHUs for warmth:

Sojourner, Spirit, and Opportunity

MMRTG for mobility:

Curiosity

Missions Enabled: The outer solar system ...and beyond

Multi-hundred watt (MHW) **RTGs systems** and evolution to GPHS-RTGs

Voyager 1 and 2

Galileo

MHW RTGs for Voyager

Cassini GPHS RTGs

New Horizons

Cassini-Huygens

Current (January 2014) Operations and Plans

- The President's proposed FY 2014 budget shifts fiscal responsibility and target budget for maintenance of NASA-required DOE infrastructure to NASA
- To improve transparency on DOE's planning basis to support NASA's mission DOE established in July 2013 an allocation of 35 kg of Pu-238 for Civil Space (NASA) use including both older U.S. supplies and previously purchased supplies from the Russian government
- In September 2013 NASA has deferred flight development of the ASRG
- Beginning in FY 2012 the Plutonium-238 Supply Project began at Oak Ridge National Laboratory to produce an average ~1 kg/yr of Pu-238 isotope (1.5 kg of PuO₂ product) by 2021
 - This effort is currently in a technology demonstration phase
- Any RPS-enabled flights for the next decade will use the flight-qualified MMRTG, as is the Mars 2020 mission – the only such future mission currently in Phase A study by NASA

