'Oumuamua, our Solar System's first (known) interstellar visitor

Karen Meech Institute for Astronomy SBAG - January 17, 2018

- R. Weryk
- M. Micheli, R. Wainscoat

The Discovery 2017

- 10/19 Discovered by PS1 \rightarrow P10Ee5V \mathbf{O}
- 10/18 Prediscovery images found in PS1 data \mathbf{O}
 - Follow up ESA ground station data rejected, large eccentricity
 - Classified as an Earth-orbit crossing asteroid
- 10/20 Catalina Sky Survey data \rightarrow classified as short-period comet •
- 10/22 CFHT observations: orbit is hyperbolic: e = 1.188 \mathbf{O}
- 10/24 The Minor Planet Center posted a name: C/2017 U1 \mathbf{O}
- 10/26 MPEC 2017-U183 name: A/2017 U1

ESA Ground (1m)

CFHT (3.6m)

What do we want to know?

- Size & Shape
- Rotation state
- Comet or asteroid?
- Composition
 - Surface colors
 - Mineral / ice composition
 - Isotopic composition
- Orbit
 - Origin
 - Age
 - Implications

- Avg 102 ± 4m, 800 x 80 x 80 m
- Period 7.34 ± 0.06 hr . . . (complex rot)
- No activity
- Composition
 - Red reflectivity, 23 ± 2 %/100 nm
 - Organics, minerals, Fe grains, metal
 - Orbit
 - Not from our SS
 - v_{∞} similar to solar neighborhood young system
 - Many more ISOs than expected

Meech et al (2017). Nature 552, 378 – doi:10.1038/nature25020

The Timeline

Name: P10EeV5 \rightarrow C/2017 U1 \rightarrow A/2017 U1

Ka'iu Kimura (navigator), Larry Kimura (Hawaiian linguistics)

Proposal of 'Oumuamua

- Ou = to reach out for, mua = first, in advance of (duplication→emphasis)
- Scout or distant messenger sent from our distant beginnings to reach out to us or build connections with us

Sun	Mon	Tue	Wed	Thu	Fri	Sat
← Sep 9 Perihelion						14- Close Earth, CSS Pre-covery
15	16	17	18-PS1 Pre-covery	19-PS1 Discovery	20-Astrometry	21-Astrometry
22- Hyperbolic orbit confirmed	23-DD prop VLT, GS; VLT Approve	24- GS prop Approved; MPEC orbit announce	25-VLT Obs, HST prop submit, UKIRT DD award; ★	26- VLT, GS obs; HST Approve; PR ★	27- GS,CFHT, UKIRT, Keck obs	28- UKIRT obs ★
29 – Hawaiian name	30- ★	31- Nature paper submit	1	2	3	4
5	6-Ref. Rpt. IAU Name OK	7	8-Resubmit paper	9	10-Paper in production	11

nature Accelerated Article Preview

Published online 11/20/17

LETTER

doi:10.1038/nature25020

A brief visit from a red and extremely elongated interstellar asteroid

Karen J. Meech, Robert Weryk, Marco Micheli, Jan T. Kleyna, Olivier R. Hainaut, Robert Jedicke, Richard J. Wainscoat, Kenneth C. Chambers, Jacqueline V. Keane, Andreea Petric, Larry Denneau, Eugene Magnier, Travis Berger, Mark E. Huber, Heather Flewelling, Chris Waters, Eva Schunova–Lilly & Serge Chastel

Politica

Scienze

Economia

Sport

R.it

Home

TUESDAY 11/21/17

Nov 21 – Front page coverage!

ALOHA ... OUMUAMUA

First observed interstellar object to pass by Earth given Hawaiian name

By Timothy Hurley thurley@staradvertiser.com

ollowing a speedy yet far-reaching analysis, University of Hawaii astronomers Monday unveiled a description of their discovery last month of the first interstellar object seen passing through our solar system.

The assessment? "This thing is quite strange," said Karen Meech of UH's Institute for Astronomy and lead author of the study, which appeared Monday in the journal Nature.

The rapidly rotating interstellar asteroid — about 2,625 feet long, or roughly seven football fields or more

INTERSTELLAR ASTEROID

The recently identified interstellar asteroid is described as likely a dark red, long, metallic or rocky object. It is now headed out of our solar system:

Name: 'Oumuamua
 Discovered: Oct. 19
 Origins: Beyond our solar system
 Age: Millions of years
 Status: Passing through
 Telescope: Pan-STARRS 1

HART board delays \$18M increase for rail contractor

Most of the higher costs are due to a heavier workload, a rail official says

World Resources ~ 100 hrs

PI	Telescope	Allocation	Date Obs	Science
Hainaut/Meech	VLT 8m	3.5 hr	10/25, 10/26	Rotation, shape, color
Fitzsimmons	WHT	< 1 hr	10/25, 10/28	Spectrum
Masiero	Palomar 5m	3 hr	10/25	Spectrum
Ye	Palomar 5m	< 1 hr	10/26	Spectrum
Meech	Gemini 8m	3.5 hr	10/26, 10/27	Rotation, shape, color
Snodgrass	VLT 8m	4 hr	10/27	Spectrum
Guzik	Gemini 8m	9.7 hr	10/27	Rotation
Chambers	UKIRT 3.8 m	9 hr	10/27, 10/28	Color - IR
Magnier	Keck 10 m	3 hr	10/27	Rotation, color
Wainscoat	CFHT 3.6 m	8 hr	10/27, 11/20, 11/21	Rotation, astrometry
Jewitt	NOT 2.5 m	2.3 hr	10/25, 10/30	Rotation, color
Jewitt	WIYN 3.5m	4.5 hr	10/28	Rotation
Bannister	Gemini 8 m	2 hr	10/29	Colors
Bolin	APO 3.5m	4 hr	10/29	Rotation
Knight	DCT 4 m	2.8 hr	10/30	Rotation
Meech	HST 1.8 m	9 orbits	11/21, 11/22, Dec, Jan	Astrometry
Sheppard	Magellan 6.5m	3 hr	11/21, 11/22	Rotation
Trilling	Spitzer	32.6 hr	11/21	Albedo, size

AstroPh papers posted

- Oct. 31 Mamajek ISO kinematics
- Nov. 1 Marcos pole, pericenter....
- Nov. 2 Masiero spectrum
- Nov. 2 Knight partial light curve
- Nov. 3 Trilling implications
- Nov. 3 Gaidos origin location
- Nov. 7 Laughlin consequences
- Nov. 7 Ye color, activity search
- Nov. 12 Cyncynates dark matter?
- Nov. 14 Hein ISO mission
- Nov. 14 Zwart ISO origin
- Nov. 14 Bolin rotation
- Nov. 15 Jewitt characterization
- Nov. 16 Bannister colors
- Nov. 22 Schneider is U1 interstellar?
- Nov. 22 Ferrin 11 might be a comet?
- Nov. 23 Feng Origin local assoc.

- Nov. 27 Raymond Implications
- Nov. 28 Zuluaga Origin Methods
- Nov. <u>30</u> Fraser Rotation tumbling
- Dec 1 Drahus 1l is tumbling
- Dec 12 Domokos explain shape
- Dec 13 Jackson ejection from binary
- Dec 17 Wright not a SS object
- Dec 18 Cuk tidal fragment from binary
- Dec 18 Fitzsimmons spectra & thermal
- Dec 19 Gaidos characterizing 1
- Dec 19 Hansen ejection from post MS *
- Dec 21 Zhang backtracking the orbit
- Jan 9 Do Number density of ISO
- Jan 10 Enriquez Breakthrough Listen
- Jan 13 Rafikov Disruption by WD
- TBD Belton Excited spin state of 1

O. Hainaut

Average size & Activity

- Brightness is related to size (and how reflective)
 - Combine all the 8-m telescope data
 - Average radius 102±4 m
- Dust Limits
 - Compare shape of stars to `Oumuamua: Maximum amount of dust is about 1/2 kg
 - Agrees with sublimation model analysis
 - Icy or rocky?

•

- $\,$ The surface at closest approach to sun reaches 600^{\circ}
- Heat from likely to penetrate only ~1 m
- 1 billion years exposure to cosmic rays should not remove all ice if it exists near surface

- It is "red" like comets....
- Organic compounds (kerogen), pyroxene, metallic iron, iron oxides

Weathering or original composition?

Pluto, albedo 0.49-0.66

lapetus, albedo 0.05-0.5

Surface Composition

Spectra from many groups

- Surface reflectivity is red
- Palomar 10/25 30% / 100 nm
- WHT 10/25 16% / 100 nm
- Palomar 10/26 10±6 % / 100 nm
- Gemini 10/28 (Bannister) 22±15 % / 100 nm
- Fitzsimmons 17±2.3 % / 100 nm (WHT)
- Fitzsimmons 9.3±0.6 % / 100 nm (VLT)

How fast does it spin?

What was done

- Fit for color and rotation
- Light curve range, $\Delta m = 2.5 \text{ mag}$
- Axis ratio > 10:1

Results

- Rotation period 7.34±0.06 hr
- Broad maxima, sharp minima
- Must have some strength

'Oumuamua's shape

ESO/M. Kornmesser

Submitted to The Astrophysical Journal 2017 November 2

The rotation period and shape of the hyperbolic asteroid A/2017 U1 from its lightcurve Matthew M. Knight¹, Silvia Protopapa¹, Michael S.P. Kelley¹, Tony L. Farnham¹, James M. Bauer¹, Dennis Bodewits¹, Lori M. Feaga¹, Jessica M. Sunshine¹

¹University of Maryland, 1113 Physical Sciences Complex, Building 415, College Park, Maryland 20742-2421, USA; mmk8a@astro.umd.edu

P > 5hr, a:b = > 3: 1

.EP] 14 Nov 2017

Rotation

DRAFT VERSION NOVEMBER 15, 2017 Typeset using IATEX twocolumn style in AASTeX61

APO TIME RESOLVED COLOR PHOTOMETRY OF HIGHLY-ELONGATED INTERSTELLAR OBJECT 11/*OUMUAMUA

BRYCE T. BOLIN^{1,2,3} HAROLD A. WEAVER,⁴ YANGA R. FERNANDEZ,⁵ CAREY M. LISSE,⁴ DANIELA HUPPENKOTHEN,¹ R. LYNNE JONES,¹ MARIO JURIĆ,¹ JOACHIM MOEYENS,^{1,6} CHARLES A. SCHAMBEAU,⁵ COLIN. T. SLATER,¹ ŽELJKO IVEZIĆ,¹ AND ANDREW J. CONNOLLY¹

¹Department of Astronomy, University of Washington, 3910 15th Ave NE, Seattle, WA 98195
 ²B612 Asteroid Institute and DIRAC Institute Postdoctoral Fellow

³Laboratoire Lagrange, Université Côte d'Azur, Observatoire de la Côte d'Azur, CNRS, Blvd. de l'Observatoire, CS 34229, 06304 Nice cedez 4, France

⁴Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723

⁵Department of Physics, University of Central Florida, Orlando, FL 32816, USA

⁶LSSTC Data Science Fellow

(Received -; Revised -; Accepted -)

Submitted to AJ

P = 8.14 hr, a:b = (6.9±3.4) : 1

Some issues: Rotation

Where did it come from?

- Initial direction from the direction of Vega
 - Could this be coming from the Vega debris disk? no
- Can it be a comet from our Solar System perturbed by Planet X?
 - To be undiscovered planet needs to be near galactic plane (U1's radiant has galactic latitude of -16°)
 - The radiant of the recently proposed planet X is not close to U1's

Lead Author	Galactic $v_{\infty}(U, V, W)$ km/s	Comments
Meech	-11.2, -22.4, -7.6	Similar to stars in solar neighborhood, from a younger system?
Mamajek (31 Oct)	-11.3, -22.4 -7.6	Not from α Cen Oort cloud
Gaidos (3 Nov)	-11.3, -22.4, -7.6	Possible origin in proto planetary disk from Carina/Columba association
Zwart (13 Nov)		Passed by 5 stars with somewhat close encounters
Feng (27 Nov)	-11.4, -22.4, -7.7	Integrate orbit back 100 Myr – 109 stars with "close" encounters; young

Interstellar Object Density

• Goal

- ISO # density upper limit given lack of detection of any ISOs in 19 yrs of survey
- Generated random (direction, v) ISO population
- Simulated the detection of synthetic ISOs using
 PS1, Mt. Lemmon, and Catalina sky surveys

Results

- 90% CL no comet activity 2.4 x 10⁻² au⁻³
- 90% CL with comet activity $2.4 \times 10^{-4} \text{ au}^{-3}$
- Oumuamua is asteroidal using the higher density implies at any one moment there is ~1 object of similar size inside 1 au

Engelhardt, Jedicke et al (2017), AJ 153, 133.

A Mission to/from 'Oumuamua?

• Initiative for Interstellar Studies – Project Lyra (10/30; Hein)

- Launch in 2027, mission duration 15 years
- Need to reach hyperbolic excess velocity of 37.4 km/s
- Current technology limits to flyby not rendezvous
- Encounter distance between 100-200 AU requires RTGs
- The Breakthrough Listen Experiment
 - Wed Dec 13 using the GBT
 - From 1-12 GHz
 - No signal detected

Why is this important?

Rare opportunity to study a sample of another solar system

Is the planet formation process similar everywhere?
Is the composition of small bodies the same everywhere?

How much of this material is out there?

Because of the high velocity → hazardous

Many groups have tried to assess 1l/2017 U1's star of origin