Small body science with occultations

Marc W. Buie
2019 Jan 29
Current active mission-level investments in small bodies

- OSIRIS-REX
- Hayabusa 2
- New Horizons
- Psyche Mission
- Lucy Mission
- Recently completed: Rosetta and Dawn
Gaia: A Door is Opened

- DR2 improvements over past catalogs are profound
 - 100-200 micro-arcsecond precision and tied to the same ICRF as used for mission navigation
 - Raw precision needed but getting accurate proper motions is even more important
- Excellent tool for predicting stellar occultations but the catalog not good forever
 - After end of mission (end of 2020, maybe 2022) the positions will begin to degrade due to proper motion uncertainties
2014MU69 occultations for New Horizons

- 2017 June 3 – 24 stations, Argentina & South Africa
- 2017 July 10 – SOFIA
- 2017 July 17 – 24 stations, Argentina
- 2018 Aug 4 – 24 stations, Colombia & Senegal
- Total cost of deployment = $1.25M
 - < 10% of cost was buying equipment
- Heavy use of volunteers
Value of 2014MU69 occultations

- Albedo (sequence planning)
- Targeting
 - Double or single? What to expect during encounter
- Navigation
 - HST data & occultation astrometry provided necessary a priori information required for optical navigation
 - Important validation of using Gaia’s implementation of the ICRF against radio tracking ICRF of spacecraft
- Paves the way to use occultations to enhance science return from small-body missions
Occultation result compared to imaging data from New Horizons
Pre-launch opportunities for Lucy

<table>
<thead>
<tr>
<th>Target</th>
<th>Date</th>
<th>G</th>
<th>G*</th>
<th>Goal</th>
<th>Event Type</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leucus</td>
<td>2018-11-14</td>
<td>15.8</td>
<td>15.6</td>
<td>A</td>
<td>Regional</td>
<td>Tucson (success!, but faint)</td>
</tr>
<tr>
<td>Leucus</td>
<td>2018-11-18</td>
<td>14.0</td>
<td>13.9</td>
<td>A</td>
<td>Regional</td>
<td>San Antonio (success!)</td>
</tr>
<tr>
<td>*Orus</td>
<td>2019-11-04</td>
<td>13.1</td>
<td>11.9</td>
<td>A</td>
<td>Foreign</td>
<td>Australia</td>
</tr>
<tr>
<td>Leucus</td>
<td>2019-12-29</td>
<td>10.9</td>
<td>11.0</td>
<td>B</td>
<td>Regional</td>
<td>Arizona, New Mexico</td>
</tr>
<tr>
<td>Donaldjohanson</td>
<td>2020-09-11</td>
<td>11.0</td>
<td>12.9</td>
<td>A</td>
<td>Regional</td>
<td>Arizona, New Mexico</td>
</tr>
<tr>
<td>*Eurybates</td>
<td>2020-09-16</td>
<td>15.5</td>
<td>14.4</td>
<td>A</td>
<td>Local</td>
<td>Wyoming</td>
</tr>
<tr>
<td>Donaldjohanson</td>
<td>2020-10-09</td>
<td>14.1</td>
<td>14.9</td>
<td>A</td>
<td>Regional</td>
<td>Texas</td>
</tr>
<tr>
<td>Orus</td>
<td>2020-10-21</td>
<td>17.0</td>
<td>15.8</td>
<td>A</td>
<td>Regional</td>
<td>Texas, southeast US</td>
</tr>
<tr>
<td>*Polymele</td>
<td>2020-11-16</td>
<td>14.6</td>
<td>14.6</td>
<td>A</td>
<td>Foreign</td>
<td>Angola, Zambia, Mozambique</td>
</tr>
<tr>
<td>Donaldjohanson</td>
<td>2020-12-29</td>
<td>13.3</td>
<td>13.9</td>
<td>A,B</td>
<td>Regional</td>
<td>Florida, Mexico</td>
</tr>
<tr>
<td>Patroclus</td>
<td>2021-03-26</td>
<td>14.8</td>
<td>12.4</td>
<td>A</td>
<td>Foreign</td>
<td>Peru, Colombia</td>
</tr>
<tr>
<td>*Polymele</td>
<td>2021-10-01</td>
<td>15.6</td>
<td>14.5</td>
<td>A</td>
<td>Foreign</td>
<td>Spain, north Africa</td>
</tr>
<tr>
<td>*Eurybates</td>
<td>2021-10-20</td>
<td>13.5</td>
<td>12.2</td>
<td>A</td>
<td>Regional</td>
<td>Arizona, New Mexico</td>
</tr>
</tbody>
</table>

Events in **FY19** are shown with a lavender background, **FY20** with a blue background, **FY21** with a green background, and **FY22** with a red background.

http://lucy.swri.edu/occultations.html
Pre-launch opportunities for Lucy

<table>
<thead>
<tr>
<th>Target</th>
<th>Date</th>
<th>G</th>
<th>G*</th>
<th>Goal</th>
<th>Event Type</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leucus</td>
<td>2018-11-14</td>
<td>15.8</td>
<td>15.6</td>
<td>A</td>
<td>Regional</td>
<td>Tucson (success!, but faint)</td>
</tr>
<tr>
<td>Leucus</td>
<td>2018-11-18</td>
<td>14.0</td>
<td>13.9</td>
<td>A</td>
<td>Regional</td>
<td>San Antonio (success!)</td>
</tr>
<tr>
<td>*Orus</td>
<td>2019-11-04</td>
<td>13.1</td>
<td>11.9</td>
<td>A</td>
<td>Foreign</td>
<td>Australia</td>
</tr>
<tr>
<td>Leucus</td>
<td>2019-12-29</td>
<td>10.9</td>
<td>11.0</td>
<td>B</td>
<td>Regional</td>
<td>Arizona, New Mexico</td>
</tr>
<tr>
<td>Donaldjohanson</td>
<td>2020-09-11</td>
<td>11.0</td>
<td>12.9</td>
<td>A</td>
<td>Regional</td>
<td>Arizona, New Mexico</td>
</tr>
<tr>
<td>*Eurybates</td>
<td>2020-09-16</td>
<td>15.5</td>
<td>14.4</td>
<td>A</td>
<td>Local</td>
<td>Wyoming</td>
</tr>
<tr>
<td>Donaldjohanson</td>
<td>2020-10-09</td>
<td>14.1</td>
<td>14.9</td>
<td>A</td>
<td>Regional</td>
<td>Texas</td>
</tr>
<tr>
<td>Orus</td>
<td>2020-10-21</td>
<td>17.0</td>
<td>15.8</td>
<td>A</td>
<td>Regional</td>
<td>Texas, southeast US</td>
</tr>
<tr>
<td>*Polymele</td>
<td>2020-11-16</td>
<td>14.6</td>
<td>14.6</td>
<td>A</td>
<td>Foreign</td>
<td>Angola, Zambia, Mozambique</td>
</tr>
<tr>
<td>Donaldjohanson</td>
<td>2020-12-29</td>
<td>13.3</td>
<td>13.9</td>
<td>A,B</td>
<td>Regional</td>
<td>Florida, Mexico</td>
</tr>
<tr>
<td>Patroclus</td>
<td>2021-03-26</td>
<td>14.8</td>
<td>12.4</td>
<td>A</td>
<td>Foreign</td>
<td>Peru, Colombia</td>
</tr>
<tr>
<td>*Polymele</td>
<td>2021-10-01</td>
<td>15.6</td>
<td>14.5</td>
<td>A</td>
<td>Foreign</td>
<td>Spain, north Africa</td>
</tr>
<tr>
<td>*Eurybates</td>
<td>2021-10-20</td>
<td>13.5</td>
<td>12.2</td>
<td>A</td>
<td>Regional</td>
<td>Arizona, New Mexico</td>
</tr>
</tbody>
</table>

Events in FY19 are shown with a lavender background, FY20 with a blue background, FY21 with a green background, and FY22 with a red background.

Cost estimate: $2.8M

http://lucy.swri.edu/occultations.html
Lucy target: (11351) Leucus

- Long 440-hr rotation period with high amplitude lightcurve
- 2017 August – successful 2-chord result MIT/IOTA
 - Enabled high-density shape mapping deployment
- 2018 Nov 14 – 23 stations near Tucson/Phoenix
 - low SNR but chords detected, 4 km spacing
- 2018 Nov 18 – 23 stations near San Antonio
 - 9 successful chords, 4 km spacing
- 2018 Dec 13 – Europe, 2-chords
 - Reaching to collaborators and observers
Leucus is not a “simple” ellipsoid
RECON

- Research and Education Collaborative Occultation Network
- Fix locations, 11-in telescope, video cameras, sited at school, operated by teachers and students
- Nominal 50-km spacing
- Targeting H<9 (D~100 km or larger)
- Search for duplicity
- Preference for cold-classical but event rate is low enough that we take what we can get
- Attempt 6-8 events per year, prior to Gaia release event rate was low, picking up now
- Funded by NSF, $1M over 5 years, very difficult level of funding to get and results are limited as a result
The Opportunity

- Stellar occultations provide a means to probe small bodies
 - Size, shape, duplicity, high-precision astrometry
- All populations within reach: eg., MBO, Jupiter Trojans, and on out into the Kuiper Belt
- Provide greater context to mission results with properties that sample the populations
- Probe many objects, faster and with much less cost than a mission
- Example: sample 10 CCKBOs, how many look like 2014MU69 and what would that tell us about solar system formation processes?
- Can reach down almost to the size of the serendipitous occultation survey objects
The Challenge

- Occultation results don’t come for free
 - Initial observation to pin down orbit
 - Second event with high-density measurements for shape
 - Current efforts so far just funded by missions for mission targets for D<100 km

- Traditional R&A programs are very limited in what they can support for this type of observation

- Need to find a way to leverage mission investments (New Horizons, Psyche, Gaia, etc.) during the present window of opportunity
Recommendation

- Suggest that NASA investigate ways to provide support for occultation-based investigations of small bodies commensurate with their ability to leverage the PSD investment in small-bodies missions.

- This is a near-term problem that needs a solution faster than can be addressed with the next Decadal survey. Note that this type of science addressing small-body populations is consistent with the last Decadal even if the method wasn’t foretold.