Deep Impact Continued Investigations (DI3)

Tony Farnham
Deep Impact Spacecraft

- Medium Resolution Imager (MRI)
 - 8 broad and narrowband filters
 - OH, CN, C\textsubscript{2} and continuum
 - 10 \(\mu\)rad/pix

- High Resolution Imager (HRIVIS)
 - 8 filters (colors)
 - 2 \(\mu\)rad/pix

- Near-IR Spectrometer (HRIIR)
 - \(\lambda\) \~ 1.05 - 4.8 \(\mu\)m
 - \(R = \delta\lambda/\lambda\) \~ 250 to 700
 - Capture H\textsubscript{2}O, CO\textsubscript{2} and CO

- Impactor Targeting System (ITS)
 - \~MRI (destroyed at Tempel 1)
Deep Impact Primary mission
Comet Tempel 1 – July 4, 2005
Deep Impact eXtended Investigation
Comet Hartley 2 – Nov 4, 2010

- CO₂
- H₂O Vapor
- Ice

Gases in Coma of Hartley 2

- Carbon Dioxide
- Water Vapor
- Hydrocarbons
Post-Hartley 2 Activities

• Spacecraft and all (non-vaporized) instruments are healthy

• Retargeted for third flyby in 2020
 – Near-Earth asteroid 2002 GT
 – Potentially hazardous object
 – Not enough fuel to reach another comet

• Cruise science
 – Use as a remote observatory for bright comets
 – Plenty of interesting candidates in the next few years

• Low-cost science
 – Developed sequences that are reused for every comet
 – Minimal staffing
 – Low priority for DSN time (limits amount of data obtained)
Spacecraft is a Unique Asset

• Proven high-quality instruments
 – Optimized for cometary science
 – New IR calibrations completed in 2012
• Only facility that can directly observe CO$_2$
 – Also measure H$_2$O and CO at the same time
 – Direct comparison of three major comet species
• Atmosphere is not a factor (weather, telluric lines, etc)
• During windows, can continuously observe
 – High cadence observations, long-term monitoring
 • 15 min sampling for ~1 week with MRI imaging
 • 15 min sampling for ~2 days with IR scans
• Different viewing geometry from Earth- or space-based
 – Complementary data
 – Fill in gaps when Earth can’t observe (e.g., ISON)
Comet C/2009 P1 Garradd

- Served as proof of concept for remote observations
- Bright Oort cloud comet
- Observed Feb 20 – Apr 10, 2012
 \[r = 1.74 \text{ to } 2.11 \text{ AU}, \quad \Delta = 1.88 \text{ to } 1.30 \text{ AU} \]
- Highlights:
 - Measured Afp and OH, CN production rates (in progress)
 - Measured rotational properties undetected from Earth
 - First simultaneous detection of \(\text{H}_2\text{O}, \text{CO}_2 \) and CO
 - In conjunction with ground-based data, showed uncorrelated behavior between \(\text{H}_2\text{O} \) and CO
 - Abundance ratios depend on when it is observed!
Garradd Results - Rotation

- Lightcurve variability
 - 10.39 hr period (single peak)
 - 1% in cont., 4% in CN
 - Sensitive because of monitoring
 - Peaks for different species are offset
 - Different sources
 - Two small outbursts
- Spiral arcs constrain pole direction (points away from Di)
 - RA ~ 227° Dec ~ +27°
 - Obliquity ~60°
 - Gas velocity ~700 m/sec
Garradd Results – IR Spectra

• Observed Mar 26-27 and Apr 2-3, 2012
• Detected H$_2$O, CO$_2$ and CO for the first time

 $Q_{H2O} = 4.9 \times 10^{28}$ mol/sec
 $Q_{CO2} = 4.1 \times 10^{27}$ mol/sec
 $Q_{CO} = 2.9 \times 10^{28}$ mol/sec

 – Highest CO/H$_2$O ever observed inside the snow line (60%)
Garradd Results – IR Spectra

- CO/H₂O from DI differed from ground-based measurements
- Follow-up with ground-based data showed H₂O and CO differ temporally
 - H₂O peaks 2-3 months before perihelion
 - CO increases monotonically
 - Never seen before
 - CO₂ measured by DI, but trend is unknown
- Interpretation: A heterogeneous nucleus experiencing a seasonal effect OR rapid pre-perihelion water loss globally exposed less altered material containing CO
- Need frequent monitoring of relative abundances to truly understand behavior

Feaga et al. 2013, submitted to Astron. J.
Comet C/2011 L4 PanSTARRS

• Bright, well observed long-period comet
• Were scheduled to observe October – December 2012
 – Inbound, shortly after crossing ice line
 – Cancelled due to request from NASA HQ to shut down the spacecraft
 – Survived, but with very minimal support
• Scheduled to get observations in September 2013
 – Outbound, near the ice line
Comet C/2012 S1 ISON

- Unique sungrazing comet discovered at large distance
- Priority for NASA
- Observed Jan 17 – Mar 10, 2013
 \[r = 5.2 \text{ to } 4.5 \text{ AU} \]
 \[\Delta = 5.7 \text{ to } 3.9 \text{ AU} \]
- Faint, but shows activity
 - No gas detected in narrowband filters or in IR spectra
- Current observations
 - Observing now with MRI (July 6 – 11, 2013)
 - IR spectra scheduled for July 19-20 and ~Aug 11-16, 2013
- Filling in gap where ISON is not observable from Earth
Future Comet Observations

Planned/desired observations, pending funding and DSN time

• Comet 2P/Encke
 – Stable, short period orbit
 • Should be thermally evolved
 • Good comparison to the Oort cloud comets
 – Would be valuable to obtain measurements of dominant species
 – Window available Dec 2013 – Feb 2014

• C/2013 A1 Siding Spring
 – Makes a close approach to Mars in Oct 2014
 – NASA may be interested in the dust hazard
Future Comet Observations

- C/2012 K1 PanSTARRS
 - Bright long period comet
 - Makes a close approach (0.12 AU) to DI in Aug 2014
 - Multiple observing windows straddle the snow line

- 67P/Churyumov-Gerasimenko
 - Support for the Rosetta mission

- 19P/Borrelly
 - Deep Space 1 target
 - Extended window Jan – Sept 2015
Final Considerations

• We’ve shown that DI observations combined with ground-based observations are very powerful
 – We are putting together a web page outlining our observation windows and goals
 – We invite ground-based observers to provide input regarding their observations, for setting up collaborations and comparative studies
 – Dennis Bodewits is coordinating this

• Although HQ is looking more favorably on DI (thanks Lindley Johnson), it still has low priority
 – We request that SBAG recognize DI as a unique low-cost asset that contributes to the NASA mission, to minimize the risk of the spacecraft being shut down while it is still providing high-quality science.