Deep Impact Continued Investigations (DI3)

Tony Farnham

Deep Impact Spacecraft

- Medium Resolution Imager (MRI)
 - 8 broad and narrowband filters
 - OH, CN, C₂ and continuum
 - 10 μrad/pix
- High Resolution Imager (HRIVIS)
 - 8 filters (colors)
 - 2 μrad/pix
- Near-IR Spectrometer (HRIIR)
 - $-\lambda \sim 1.05 4.8 \mu m$
 - $-R = \delta \lambda / \lambda \sim 250 \text{ to } 700$
 - Capture H₂O, CO₂ and CO
- Impactor Targeting System (ITS)
 - ~MRI (destroyed at Tempel 1)

Deep Impact Primary mission Comet Tempel 1 – July 4, 2005

Deep Impact eXtended Investigation Comet Hartley 2 – Nov 4, 2010

Post-Hartley 2 Activities

- Spacecraft and all (non-vaporized) instruments are healthy
- Retargeted for third flyby in 2020
 - Near-Earth asteroid 2002 GT
 - Potentially hazardous object
 - Not enough fuel to reach another comet
- Cruise science
 - Use as a remote observatory for bright comets
 - Plenty of interesting candidates in the next few years
- Low-cost science
 - Developed sequences that are reused for every comet
 - Minimal staffing
 - Low priority for DSN time (limits amount of data obtained)

Spacecraft is a Unique Asset

- Proven high-quality instruments
 - Optimized for cometary science
 - New IR calibrations completed in 2012
- Only facility that can directly observe CO₂
 - Also measure H₂O and CO at the same time
 - Direct comparison of three major comet species
- Atmosphere is not a factor (weather, telluric lines, etc)
- During windows, can continuously observe
 - High cadence observations, long-term monitoring
 - 15 min sampling for ~1 week with MRI imaging
 - 15 min sampling for ~2 days with IR scans
- Different viewing geometry from Earth- or space-based
 - Complementary data
 - Fill in gaps when Earth can't observe (e.g., ISON)

Comet C/2009 P1 Garradd

- Served as proof of concept for remote observations
- Bright Oort cloud comet

- Observed Feb 20 Apr 10, 2012
 r = 1.74 to 2.11 AU, Δ = 1.88 to 1.30 AU
- Highlights:
 - Measured Afp and OH, CN production rates (in progress)
 - Measured rotational properties undetected from Earth
 - First simultaneous detection of H₂O, CO₂ and CO
 - In conjunction with ground-based data, showed uncorrelated behavior between H₂O and CO
 - Abundance ratios depend on when it is observed!

Garradd Results - Rotation

- Lightcurve variability
 - 10.39 hr period (single peak)
 - 1% in cont., 4% in CN
 - Sensitive because of monitoring
 - Peaks for different species are offset
 - Different sources
 - Two small outbursts
- Spiral arcs constrain pole direction (points away from DI)
 - $RA \sim 227^{\circ} Dec \sim +27^{\circ}$
 - Obliquity ~60°
 - Gas velocity ~700 m/sec

Garradd Results – IR Spectra

- Observed Mar 26-27 and Apr 2-3, 2012
- Detected H₂O, CO₂ and CO for the first time

$$Q_{H2O} = 4.9 \times 10^{28} \text{ mol/sec}$$

$$Q_{CO2} = 4.1 \times 10^{27} \text{ mol/sec}$$

$$Q_{CO} = 2.9 \times 10^{28} \text{ mol/sec}$$

Highest CO/H₂O ever observed inside the snow line (60%)

Garradd Results – IR Spectra

- CO/H₂O from DI differed from ground-based measurements
- Follow-up with ground-based data showed H₂O and CO differ temporally
 - H₂O peaks 2-3 months before perihelion
 - CO increases monotonically
 - Never seen before

- Interpretation: A heterogeneous nucleus experiencing a seasonal effect OR rapid pre-perihelion water loss globally exposed less altered material containing CO
- Need frequent monitoring of relative abundances to truly understand behavior

Comet C/2011 L4 PanSTARRS

- Bright, well observed long-period comet
- Were scheduled to observe October December 2012
 - Inbound, shortly after crossing ice line
 - Cancelled due to request from NASA HQ to shut down the spacecraft
 - Survived, but with very minimal support
- Scheduled to get observations in September 2013
 - Outbound, near the ice line

Comet C/2012 S1 ISON

- Unique sungrazing comet discovered at large distance
- Priority for NASA
- Observed Jan 17 Mar 10, 2013

```
r = 5.2 \text{ to } 4.5 \text{ AU}

\Delta = 5.7 \text{ to } 3.9 \text{ AU}
```

- Faint, but shows activity
 - No gas detected in narrowband filters or in IR spectra
- Current observations
 - Observing now with MRI (July 6 11, 2013)
 - IR spectra scheduled for July 19-20 and ~Aug 11-16, 2013
- Filling in gap where ISON is not observable from Earth

Comet ISON (C/2012 S1)

Deep Impact MRI observations from Jan 24-29 2013

Future Comet Observations

Planned/desired observations, pending funding and DSN time

- Comet 2P/Encke
 - Stable, short period orbit
 - Should be thermally evolved
 - Good comparison to the Oort cloud comets
 - Would be valuable to obtain measurements of dominant species
 - Window available Dec 2013 Feb 2014
- C/2013 A1 Siding Spring
 - Makes a close approach to Mars in Oct 2014
 - NASA may be interested in the dust hazard
 - Windows Jan Jun 2014, Nov 2014 Feb 2015

Future Comet Observations

- C/2012 K1 PanSTARRS
 - Bright long period comet
 - Makes a close approach (0.12 AU) to DI in Aug 2014
 - Multiple observing windows straddle the snow line
 - Windows Nov 2014 Feb 2015, June Aug 2014
 Jan Mar 2015, May Jul 2015
- 67P/Churyumov-Gerasimenko
 - Support for the Rosetta mission
 - Windows Nov 2014 Feb 2015, May 2015 Mar 2016
- 19P/Borrelly
 - Deep Space 1 target
 - Extended window Jan Sept 2015

Final Considerations

- We've shown that DI observations combined with ground-based observations are very powerful
 - We are putting together a web page outlining our observation windows and goals
 - We invite ground-based observers to provide input regarding their observations, for setting up collaborations and comparative studies
 - Dennis Bodewits is coordinating this
- Although HQ is looking more favorably on DI (thanks Lindley Johnson), it still has low priority
 - We request that SBAG recognize DI as a unique lowcost asset that contributes to the NASA mission, to minimize the risk of the spacecraft being shut down while it is still providing high-quality science.