Main Belt Comets and Volatiles in the Asteroid Belt

K. J. Meech (IfA)

SBAG 9 Meeting
July 11, 2013
Small Bodies & the Decadal Survey

• **Goals – Building new worlds & planetary habitats**
 – What were the initial conditions, processes & stages of Solar System formation
 – What were the primordial sources of organics and volatiles

• **Key Recent Discoveries**
 – Insights into disk structure & chemical models
 – Change our paradigm of comet formation
 – Aqueous alteration seen everywhere in primitive meteorites, Ceres outgassing
 – Moon less dry than previously thought
 – Extensive near-surface Ice on Mars
 – Explosion in the number of known exoplanets
 – New discoveries in the asteroid belt related to volatiles
 – New insights into comet chemistry from missions
Disks to Planets

- Planets form in circumstellar disks
 - Disks are flared → higher surface T (UV irradiation)
- Volatiles present as gas and ice
 - Disk chemistry affected by surface UV, X-ray, mixing of materials, disk T and density structure
 - Inside an evaporation front (snow-line) present as gas
 - Comets sample a cold reservoir in the disk
- Snowline Debates & Observation
 - Snowlines change with time
 - Models locations differ (1 AU → Ast belt)
 - Herschel/Spitzer measurement in 1 disk
 - TW Hya – gas density sharp drop
 - Snowline at few AU

Hogerheijde, Bergin et al., Science 334 (2011)
IAU Symp 280, (2011)

- **Old View**
 - Long Period Comets (LPCs)
 - Form in giant planet region
 - Scattered out to Oort cloud
 - Perturbed inward
- **JFCs form in Kuiper belt**
 - Migrate in→Centaurs→JFCs

- **A changing View**
 - *Nice model* — dynamics post-Jup form
 - Water came after Earth formed
 - Easiest to bring water from ast belt
 - *Grand Tack* — formation of giant planets
 - Explains small size of Mars
 - Delivers outer SS icy objects to Belt & Earth

- **Implications**
 - Significant mixing in nebula
Water in the Asteroid Belt

• Aqueous Alteration in Asteroids
 – Chondrites – sampled from ~15 groups
 – Aqueous alteration everywhere during first few Myr
 – Occurred at low to high T (300-1200K) - hydrothermal
 – Parent body formation location not known (ast belt)

• Ceres Outgassing
 – Water detected IUE 1991 (A’Hearn)
 – Ground searches since then, no detections
 – Herschel 11/2011 – upper limits
Water in Asteroid Belt & Comets

- Long history of asteroid phyllo-observations (Vilas et al)
- Hydrated minerals on 24 Themis
- Hydrated minerals on Vesta

D/H in Hartley 2 \rightarrow JF comets don’t form where we thought

Asteroid Belt Discoveries: MBCs

- **Characterization**
 - Objects dynamically asteroidal, formed in-situ
 - Exhibit comet-like tails
 - Most must be driven by H2O sublimation
 - Surface H2O not stable – requires “activation”

- **Water not observable from Earth**
 - H2O fluxes needed to lift dust 1-2 orders of mag lower than detection capabilities w/ Keck
 - Characterization → in-situ

![Graph showing relationship between Heliocentric Distance and Log H2O fluxes](https://example.com/graph.png)

Fig. from D. Jewitt, AJ 143, 66.
EPOXI Mission

- **Nov 4, 2010 Encounter**
 - 12.3 km/sec; 700 km flyby
 - 2m / pix best resolution
 - 3 instruments (vis & near IR)

- **Known prior to EPOXI**
 - Comets a mix of dust & volatiles
 - Comets are physically very diverse
 - Excellent insulators
 - Mixture of high and low-T SS material

Spacecraft

Ball – JPL mission
Still operational
EPOXI Discoveries

- Nucleus surrounded by swarm of large chunks
 - mm to 10’s cm slow moving (ice + dust)
- Dust, CO$_2$ and water-ice grains flow together
 - New discovery: CO$_2$ drives jets & activity
 - Water vapor is everywhere – but faint
 - Minimal surface ice – associated with rough morning terminator

New view of importance of CO$_2$ as a driver of activity in comets
Ground-Based Brightness Data

- **Surface sublimation Models**
 - Energy balance at surface of nucleus
 - Incident energy
 - Thermal
 - Sublimation
 - Conduction
 - Ices sublimate
 - Drags dust from surface
 - Increased scattering from dust
 - Compute observed total brightness

Implications: Can get information about CO2 abundance from the ground for a large number of comets
Measurements of CO$_2$ in Comets

- Earth Atm opaque at 4.26, 15.2 microns

- **Direct Observations**
 - Giotto in situ – mass spectrometer; EPOXI in situ near IR spectra
 - ISO spectra
 - Spitzer, WISE thermal bands
 - Akari Satellite (~20 comet measurements)

- **Indirect**
 - Forbidden CO emission during photo-dissociative excitation of CO$_2$
EPOXI has shown us that we can use ground-based observations to map out chemistry of comets looking back to the early solar system chemistry
Volatile Reservoirs Explored

- Explored Small Body Volatile Reservoirs
 - Oort Cloud & Kuiper belt
 - Ground-based observations → Comets
 - New Horizons → Pluto, TNO
 - Outer solar system Satellites
 - Cassini – Enceladus
 - Jupiter family comets
 - Deep Impact, EPOXI, StardustNExT, Rosetta
 - Herschel, Spitzer, Ground based observations
 - Middle – inner asteroid belt (meteorites)

- Unexplored Volatile Reservoirs
 - Outer belt → Main Belt Comets
New Capabilities

- **Pan STARRS & LSST**
 - Survey for new active objects

- **ALMA**
 - Disk resolved chemical observations
Meeting the Decadal Goals

- **SS Dynamics Model landscape is rapidly changing**
 - Models reproduce structure, mass distribution → not chemistry

- **Many communities are interested in water in the main belt**
 - Cosmochemists – aqueous alteration everywhere in primitive meteorites (don’t know dynamical origin)
 - Planetary observations: water in outer belt: Themis family, Ceres

- **The outer asteroid belt is wet**
 - We need in-situ observations to characterize it
 - DAWN is the first step – but Ceres is evolved

- **The next decade and how to move forward**
 - Need to explore the outer belt . . .
 - If we characterize the water isotopically & combine with dynamical models and new observations (ALMA) → testable hypotheses