

Main Belt Comets and Volatiles in the Asteroid Belt

K. J. Meech (IfA)

SBAG 9 Meeting

July 11, 2013

Small Bodies & the Decadal Survey

- Goals Building new worlds & planetary habitats
 - What were the initial conditions, processes & stages of Solar System formation
 - What were the primordial sources of organics and volatiles

Key Recent Discoveries

- Insights into disk structure & chemical models
- Change our paradigm of comet formation
- Aqueous alteration seen everywhere in primitive meteorites, Ceres outgassing
- Moon less dry than previously thought
- Extensive near-surface Ice on Mars
- Explosion in the number of known exoplanets
- New discoveries in the asteroid belt related to volatiles
- New insights into comet chemistry from missions

Disks to Planets

dust optical surface
HOT SURFACE

COLD MIDPLANE

Bergin et al.

- Planets form in circumstellar disks
 - Disks are flared → higher surface T (UV irradiation)
- Volatiles present as gas and ice
 - Disk chemistry affected by surface UV, X-ray, mixing of materials, disk T and density structure
 - Inside an evaporation front (snow-line) present as gas
 - Comets sample a cold reservoir in the disk
- Snowline Debates & Observation
 - Snowlines change with time
 - Models locations differ (1 AU → Ast belt)
 - Herschel/Spitzer measurement in 1 disk
 - TW Hya gas density sharp drop
 - Snowline at few AU

Midplane all H₂O is ice ~6000 Earth oceans Hogerheijde, Bergin et al., *Science* 334 (2011) IAU Symp 280, (2011)

Planetesimals & Comets: A Changing View

Tsinganis, Morbedelli *et al* 2005 Walsh *et al*, 2011

Old View

- Long Period Comets (LPCs)
 form in giant planet region
- Scattered out to Oort cloud
- Perturbed inward
- JFCs form in Kuiper belt
 - Migrate in → Centaurs → JFCs

A changing View

- Nice model dynamics post-Jup form
 - Water came after Earth formed
 - Easiest to bring water from ast belt
- Grand Tack formation of giant planets
 - Explains small size of Mars
 - Delivers outer SS icy objects to Belt & Earth

Implications

Significant mixing in nebula

Water in the Asteroid Belt

Aqueous Alteration in Asteroids

- Chondrites sampled from ~15 groups
- Aqueous alteration everywhere during first few Myr
- Occurred at low to high T (300-1200K) hydrothermal
- Parent body formation location not known (ast belt)

Ceres Outgassing

- Water detected IUE 1991 (A'Hearn)
- Ground searches since then, no detections
- Herschel 11/2011 upper limits

Water in Asteroid Belt & Comets

- Long history of asteroid phylloobservations (Vilas et αl)
- Hydrated minerals on 24Themis
- Hydrated minerals on Vesta

De Sanctis *et al* (2012) *ApJ* 758, L36

D/H in Hartley 2 → JF comets don't form where we thought

Campins et al. (2010) Nature 464 Rivkin & Emery (2010) Nature 464

Hartogh et al (2011) Nature 478

Asteroid Belt Discoveries: MBCs

Characterization

- Objects dynamically asteroidal, formed in-situ
- Exhibit comet-like tails
- Most must be driven by H2O sublimation
- Surface H2O not stable requires "activation"

Water not observable from Earth

- H2O fluxes needed to lift dust 1-2 orders of mag lower than detection capabilities w/ Keck
- Characterization → in-situ

Fig. from D. Jewitt, AJ 143, 66.

- MBC limits
- ★ 9P/Tempel 1
- 238P
- 2010 R2
- <u>0</u> 238P
- 176P

Nov 4, 2010 Encounter

- 12.3 km/sec; 700 km flyby
- zm / pix best resolution
- 3 instruments (vis & near IR)

Known prior to EPOXI

- Comets a mix of dust & volatiles
- Comets are physically very diverse
- Excellent insulators
- Mixture of high and low-T SS material

EPOXI Mission

Spacecraft Ball – JPL mission Still operational

A'Hearn et al. 2011, Science **332**, 1396

- Nucleus surrounded by swarm of large chunks
 - mm to 10's cm slow moving (ice + dust)

- New discovery: CO₂ drives jets & activity
- Water vapor is everywhere but faint
- Minimal surface ice associated with rough morning terminator

New view of importance of CO2 as a driver of activity in comets

Ground-Based Brightness Data

- Surface sublimation Models
 - Energy balance at surface of nucleus
 - Incident energy
 - Thermal
 - Sublimation
 - Conduction
 - Ices sublimate
 - Drags dust from surface
 - Increased scattering from dust
 - Compute observed total brightness

Implications: Can get information about CO2 abundance from the ground for a large number of comets

Measurements of CO2 in Comets

Earth Atm opaque at 4.26,
 15.2 microns

Direct Observations

- Giotto in situ mass spectrometer; EPOXI in situ near IR spectra
- ISO spectra
- Spitzer, WISE thermal bands
- Akari Satellite (~20 comet measurements)

Indirect

Forbidden CO emission during photo-dissociative excitation of CO2

EPOXI has shown us that we can use groundbased observations to map out chemistry of comets looking back to the early solar system chemistry

Volatile Reservoirs Explored

- Explored Small Body Volatile Reservoirs
 - Oort Cloud & Kuiper belt
 - Ground-based observations → Comets
 - New Horizons → Pluto, TNO
 - Outer solar system Satellites
 - Cassini Enceladus
 - Jupiter family comets
 - Deep Impact, EPOXI, StardustNExT, Rosetta
 - Herschel, Spitzer, Ground based observations
 - Middle inner asteroid belt (meteorites)
- Unexplored Volatile Reservoirs
 - Outer belt → Main Belt Comets

New Capabilities

- Pan STARRS & LSST
 - Survey for new active objects
- ALMA
 - Disk resolved chemical observations

Meeting the Decadal Goals

- SS Dynamics Model landscape is rapidly changing
 - Models reproduce structure, mass distribution → not chemistry
- Many communities are interested in water in the main belt
 - Cosmochemists aqueous alteration everywhere in primitive meteorites (don't know dynamical origin)
 - Planetary observations: water in outer belt: Themis family,
 Ceres
- The outer asteroid belt is wet
 - We need in-situ observations to characterize it
 - DAWN is the first step but Ceres is evolved
- The next decade and how to move forward
 - Need to explore the outer belt . . .
 - If we characterize the water isotopically & combine with dynamical models and new observations (ALMA) > testable hypotheses