Asteroid Redirect Mission and Human Exploration

Michele Gates

Human Exploration and Operations Mission Directorate

Leveraging Capabilities for an Asteroid Mission

- NASA is aligning key activities in Science, Space Technology, and Human Exploration and Operations Mission Directorates
 - Asteroid identification and characterization efforts for target selection
 - Solar electric propulsion for transport to and return of the target asteroid
 - Autonomous guidance and control for proximity operations and capture
 - Orion and Space Launch System (SLS) missions for asteroid rendezvous
 - Technologies for astronaut extra-vehicular activities
- Each individual activity provides an important capability in its own right for human and robotic exploration
- We are working to utilize all of these activities to
 - Identify and redirect a small asteroid to a stable orbit in the lunar vicinity; and
 - Investigate and return samples with our astronauts using the Orion and SLS assets.
- The FY14 budget supports continued advancement of the important individual elements and furthers the definition of the overall potential mission.

Overall Mission Consists of Three Main Segments

Asteroid Identification Segment:

Ground and space based NEA target detection, characterization and selection

Asteroid Redirection Segment:

Solar electric propulsion (SEP) based robotic asteroid redirect to trans-lunar space

Asteroid Crewed Exploration Segment:

Orion and SLS based crewed rendezvous and sampling mission to the relocated asteroid

Decision & Engagement Strategy

Reference Robotic Mission Design Executive Summary

(If Needed)

1. Launch (2 Options)

1a. Atlas V – Low Thrust Spiral to Moon

1b. SLS or Falcon Heavy – Direct Launch to Moon or to Asteroid

Explore: Orion Mission Overview

Return crew safely to Earth with asteroid samples in Orion

Perform Extra- Vehicular Activity (EVA) to retrieve asteroid samples

Nominal Orion Mission Summary

- Outbound
 - Flight Day 1 Launch/Trans Lunar Injection
 - FD2-FD5 Outbound Trans-Lunar Cruise
 - Flight Day 6 Lunar Gravity Assist (LGA)
 - FD7-FD9 Post LGA to DRO Cruise
- Joint Operations with Robotic Spacecraft
 - Flight Day 10 Rendezvous/Grapple
 - Flight Day 11 EVA #1
 - Flight Day 12 Suit Refurbishment, EVA #2
 Prep
 - Flight Day 13 EVA #2
 - Flight Day 14 Contingency Day/Departure
 Prep
 - Flight Day 15 Departure from DRO
- Inbound
 - Flight Day 16 DRO to Lunar Cruise
 - Flight Day 17 Lunar Gravity Assist
 - FD18-FD21 Inbound Trans-Lunar Cruise
 - Flight Day 22 Earth Entry and Recovery
 - Note: Mission Duration Varies From 22-25

 Days

Notional EVA Operations From Orion

- Two EVAs executed from Orion
- Crew translates from Orion to robotic spacecraft
- EVA Tool box prepositioned on robotic spacecraft
- Telescoping booms pre-stowed on robotic spacecraft
- Crewmember stabilized on portable foot restraint for worksite
- Loops available on capture mechanism for additional stabilization

Notional Design for EVA: Robotic Spacecraft

Asteroid Mission Supports Long-Term Human Mars Exploration Strategy

- Demonstration of Core Capabilities for deep space missions:
 - Block 1 SLS, Orion
 - 40kW Solar Electric Propulsion System
 - EVA, rendezvous, proximity operations, docking or grapple, deep space navigation and communications
 - Human operations and risk management beyond low earth orbit
 - Sample acquisition, caching, storage operations, and crew transfer operations for future Lunar/Mars sample return missions
- Demonstrates ability to work and interact with a small planetary body:
 - Systems for instrument placement, sample acquisition, material handling, and testing
 - Understanding of mechanical properties, environment, and mitigation of hazards

Capability Driven Framework

Mars Exploration Capability Build-Up Using Asteroid Redirect Mission and ISS

