NEO SKGs in view of ARM

Andy Rivkin, who hasn't asked the other members of the SAT about this

Some setup

- Until earlier this year, the expectation has been that we'd send astronauts to an NEO in deep space
- SBAG stood up a team at NASA's request to look at "Strategic Knowledge Gaps" (next slide)
- The Asteroid Retrieval (Redirection?) Mission (ARM) proposes moving a 8-m NEO to high lunar orbit to serve as a new target for astronauts
- At this writing, other details are TBD
 - We may know more when I'm actually speaking
 - Updated, Tuesday night: not really
- Now we need to think about SKGs for the robotic retrieval/redirection phase in addition to the actual human visit

"Strategic Knowledge Gaps"

- "The gap between what the organization needs to know and what it knows now"
- Taking a human visit to an NEO as a given*, what don't we know how to do, and how do we learn to do it?
- Ultimately, generate list of measurements, allowing design of precursor missions

Figure 15.3

Zack, in *The Strategic Management of Intellectual Capital and Organizational Knowledge*, Choo & Bontis eds. (2002)

^{*}Just for the purposes of this slide

...for instance:

- Goal: Ensure Kryptonian race survives planetary destruction
- Path: Evacuate inhabitant
 (s) to intact planets
- Example SKGs
 - Fraction of planets within reach that are habitable
 - Effects of non-K/M star on Kryptonian life
 - Likely reactions of lessadvanced civilizations to "first contact"

Morrison and Quitely, 2008

SB SKG Themes and Categories

SB SKGs can be organized into several themes, which can be further divided into categories:

- I. Human mission target identification (NEOs). The identification of multiple targets for human exploration is fundamental.
- II. Understand how to work on or interact with the SB surface. Human presence may disturb the environment in non-intuitive ways. We need to understand how best to perform sample acquisition and handling, instrument placement, and proximity operations.
- III. Understand the SB environment and its potential risk/benefit to crew, systems, and operational assets. The small body environment may include dust emitted periodically (for instance via levitation) or episodically (after impact or spin-up events). It may enhance or screen solar radiation. It may be gravitationally metastable.
- IV. Understand the SB resource potential. ISRU is considered a "game changer" in how humans explore the Solar System by enabling an infrastructure that allows a sustainable human presence in space. The short-stay missions likely to be in the first wave of NEO or Phobos/Deimos visits may test or prepare that infrastructure but are unlikely to take advantage of it.

Critical Items

Timescale	SKGs: Number and Name
Near	 I-A Constraints on targets: Reachable targets within architecture and radiation exposure limits I-B NEO orbit distribution
Mid	 I-C-3: NEO rotation state II-C-2: Geotechnical properties of SB surface III-D-1:Anchoring for tethered activities III-D-2:Non-contact proximity operations development III-A-1: Particle environment, undisturbed III-A-3: Particle environment post-disturbance III-B-1: Local effects post-solar flare III-B-2: Small body surfaces as secondary radiation sources III-D-1: Local structural stability IIII-D-2: Global structural stability
Long	1. III-A-2: Phobos/Deimos torus characterization

Critical Items

Timescale	SKGs: Number and Name
Near	 I-A Constraints on targets: Reachable targets within architecture and radiation exposure limits I-B NEO orbit distribution
Mid	 I-C-3: NEO rotation state II-C-2: Geotechnical properties of SB surface II-D-1:Anchoring for tethered activities III-D-2:Non-contact proximity operations development III-A-1: Particle environment, undisturbed III-A-3: Particle environment post-disturbance III-B-1: Local effects post-solar flare III-B-2: Small body surfaces as secondary radiation sources III-D-1: Local structural stability III-D-2: Global structural stability
Long	1. III-A-2: Phobos/Deimos torus characterization

Critical Measurements: Part 1

Measurement	SKGs: Number and Name	Notes
Orbit/Size/Frequency of NEOs in accessible orbits to 30 m size	I-A-1, I-A-2, I-B-1, I-B-2	Survey where possible, modeling as necessary. Size from HQ.
Biological Research	I-A-1, I-A-2, I-B-1, I-B-2	Better defined by bio experts
Propulsion Research	I-A-1, I-A-2	Better defined by propulsion engineers
Shielding Research	I-A-1, I-A-2	Better defined by engineers
Radiation dosimetry in asteroid milieu	I-A-1, I-A-2, III-B-1, III-B-2	Details better defined by bio experts. CRaTER, RAD example instruments
Measure rotation rate of target asteroid to 15 minute precision	I-C-3, III-D-1, III-D-2	After target is selected; combination of Earthbased, spacecraft, in-situ study as necessary.
Measure rotation rates in NEO population for ensemble properties	I-C-3	Combination R&A, spacecraft study
Model sparsely-sampled lightcurves to understand biases	I-C-3	Some data will be available from LSST/Pan-STARRS, but optimized for discovery not lightcurve collection.
Studies of "how quickly-rotating is TOO quickly-rotating" for target.	I-C-3, II-D-2	Details better defined by bio experts (human factors) and engineering experts (operations issues)
Measurement of mass (in-situ radio science)	II-C-2, III-D-1, III-D-2	If multiple system, remote measurements also possible. Sufficient precision to support 5% precision on density.
Measurement of volume/shape model (in-situ imaging/LIDAR)	II-C-2, II-D-1, II-D-2, III-D-1, III-D-2	Radar (if observable), lightcurve observations also applicable. Sufficient precision to support 5% precision on density, understand local gravity to

Critical Measurements: Part 1

Measurement	SKGs: Number and Name	Notes
Orbit/Size/Frequency of NEOs in accessible orbits to 30 8 m size	I-A-1, I-A-2, I-B-1, I-B-2	Survey where possible, modeling as necessary. Size from HQ.
Biological Research	I-Λ-1, I-Λ-2, I-Β-1, I-Β-2	Better defined by bio experts
Propulsion Research	I-A-1, I-A-2	Better defined by propulsion engineers
Shielding Research	 A 1, A 2	Better defined by engineers
Radiation dosimetry in asteroid milieu	I-Λ-1, I-Λ-2, III-B-1, III-B-2	Details better defined by bio experts. CRaTER, RAD example instruments
Measure rotation rate of target asteroid to 15 minute precision	I-C-3, III-D-1, III-D-2	After target is selected; combination of Earth- based, spacecraft, in-situ study as necessary.
Measure rotation rates in NEO population for ensemble properties	I-C-3	Combination R&A, spacecraft study
Model sparsely-sampled lightcurves to understand biases	I-C-3	Some data will be available from LSST/Pan-STARRS, but optimized for discovery not lightcurve collection.
Studies of "how quickly-rotating is TOO quickly-rotating" for target.	I -C-3, II-D-2	Details better defined by bio experts (human factors) and engineering experts (operations issues)
Measurement of mass (in-situ radio science)	II-C-2, III-D-1, III-D-2	If multiple system, remote measurements also possible. Sufficient precision to support 5% precision on density.
Measurement of volume/shape model (in-situ imaging/LIDAR)	II-C-2, II-D-1, II-D-2, III-D-1, III-D-2	Radar (if observable), lightcurve observations also applicable. Sufficient precision to support 5% precision on density understand local gravity to

Critical Measurements: Part 2

Measurement	SKGs: Number and Name	Notes
Calculation/constraint on mass/ density, thermal properties via measurement of YORP (long-term lightcurve/radar observations)	II-C-2, III-D-1, III-D-2	Ground/Earth-based. Obsoleted by in-situ data Not obtainable in all cases.
In-situ measurement of cohesion/ shear strength/etc. (imaging, surface disturbances)	II-C-2, III-D-1, III-D-2	Impactor? Observation of plume impingement?
Near-surface porosity of target	II-D-1	In-situ or ground-based radar.
Engineering research	II-D-2	Including thruster contamination threshold for science
Measurements of dust density at target	III-A-1, III-A-3, III-A-2 (at Phobos/Deimos)	In-situ observations.
High phase angle, long duration imaging at target	III-A-1, III-A-3, III-A-2 (at Phobos/Deimos)	Search for dust/dust levitation. In-situ. Also insights from Rosetta/Hayabusa 2/OSIRIS-REx/ completed mission data
In-situ radiation monitoring	III-B-1, III-B-2	Also data mining of XGRS/GRS from NEAR/ Hayabusa?
High phase angle, long-duration imaging at target	III-Λ-1, III-Λ-3	Search for dust/dust levitation. In-situ.

A few thoughts on what's changed

- Survey
- Proximity Operations
- Science output
- ISRU
- Bio/etc. issues

Survey

- Previous concept needs object in particular orbit, bigger than 30 (15?) m.
 - Almost anything in the right orbit would probably have been fine: Odds are it'd be big enough
 - No penalty for larger objects
- New concept needs object not too big or too small
 - Unlikely to find good enough objects in course of ongoing surveys?
 - Doable at all from interior to Earth given target sizes and necessary orbits?
 - Definitely need albedos: factor of ~3 uncertainty in size from
 - Serious constraints relating to getting physical observations

Proximity Operations

- Much of the danger/ uncertainty shifts from human visit to capture:
 - Object to be despun before human visit
 - If a rubble pile,
 structure may be
 destroyed during
 capture
 - Desired infrastructure could be installed during capture?

Ready for the asteroid round-up!

In-Situ Resource Utilization (ISRU)

- Not obvious (to me) how well this will be demonstrable
 - Small mass
 - Odds against target having extractable hydrated minerals
 - Harris suggests 8-m population dominated by lunar ejecta (so no metals either?)

Bio/etc. issues

- Mostly beyond scope of SBAG concern
- Has been noted in many places that this is no longer really a deep space mission

Science output

- Stressed by NASA people this is "not a science mission"
- Not obvious how much (if any) sample returned
- Not obvious how many (if any) Decadal Survey goals met
- Potential for lots of science, not obvious how much will be achievable in capture phase

Summary

- The ARM concept, as currently understood, differs significantly from the previous idea of a human NEO visit
- Some of the previous set of SKGs no longer seem as important, but some relating to the capture/redirection phase become more critical
- A more formal update may be worthwhile once the situation settles