

# **Asteroid Redirect Mission Asteroid Operations Phase**

**Bo Naasz, GSFC Benjamin Cichy, GSFC** 

13th Meeting of the NASA Small Bodies Assessment Group June 29, 2015













### Introduction



- ARRM completed MCR February 2015
- Option to capture a boulder from a PHAsized target asteroid selected to proceed into Phase A
- Key mission dates
  - Launch December 2020
  - Available for crewed mission 2025

### Outline of Briefing

- Asteroid Operations Phase overview and animation
- Capture Module overview
- Summary of significant capture system risks, uncertainties, sensitivities
- Technology development status









# Asteroid Operations Phase Overview



Approach 2 weeks

Characterization 2 months

Boulder Collection 2.5 months (allocated) Planetary Defense Demo 5 months





Note: Asteroid operations timeline varies depending on target asteroid. Times shown are for 2008 EV<sub>5</sub>: total stay time of 305 days with an additional 95 days of margin.







# Candidate Parent Asteroids











Asteroids not to scale

#### Comparison of reference parent asteroids

|             | Itokawa           | Bennu                                            | 2008 EV <sub>5</sub>                                              | 1999 JU <sub>3</sub>                                  |
|-------------|-------------------|--------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------|
| Size        | 535 x 294 x 209 m | 492 x 508 x 546 m                                | 420 x 410 x 390 m                                                 | 870 m diameter                                        |
| V∞          | 5.68 km/s         | 6.36 km/s                                        | 4.41 km/s                                                         | 5.08 km/s                                             |
| Aphelion    | 1.70 AU           | 1.36 AU                                          | 1.04 AU                                                           | 1.42 AU                                               |
| Spin Period | 12.13 hr          | 4.297 hr                                         | 3.725 hr                                                          | 7.627 hr                                              |
| Туре        | S                 | B (C-grp volatile rich)                          | C (volatile rich)                                                 | C (volatile rich)                                     |
| Precursor   | Hayabusa (2005)   | OSIRIS-REx<br>(9/2016 launch,<br>8/2018 arrival) | None currently planned (boulders implied from 2008 radar imaging) | Hayabusa 2<br>(launched 12/4/2014,<br>7/2018 arrival) |

### Approach, Descent, and Landing





Asteroid Redirect Vehicle (ARV) landing on the asteroid surface

### **Approach and Characterization**

- Approach
  - 1,000 to 100 km at ~45 degree sun angles
  - Refine initial shape and gravity models
- Characterization
  - Six fly-bys at 1 km close approach
  - 1 cm resolution imagery and detailed gravity model
  - Characterize parent asteroid and select 3 candidate boulders

### **Descent and Landing**

- Closed-loop autonomous descent and landing with 2 "dry runs" within 50 m of surface
- Descent over boulder using Terrain Relative Navigation (TRN) based on wide field of view camera images and LIDAR measurements
- Contact and Restraint Subsystem (legs) attenuates touchdown loads
  - Max touchdown velocity: 11 cm/s
  - Touchdown accuracy: 50 cm

### Surface Operations





Asteroid Return Vehicle (ARV) on surface with deployed robot arm



**Boulder capture with Microspine tool** 

### **Surface Operations**

- Capture multi-ton boulder from the surface
- After landing, vehicle thrusts into surface to maintain contact and increase stability
- Robotic arms are moved one at a time until contact with a maximum contact speed of 1 cm/s
- Contact points are approximately 180 degrees apart with the height of contact depending on the size and shape of the boulder
- After each contact, Microspine grippers engage and anchor boulder – process takes less than five minutes
- Once a successful grip and anchoring is detected, the system engages the brakes on the arm joints, and prepares for ascent

### Ascent and Restraint





Boulder ascent from surface of the asteroid



**Boulder restrained for return cruise** 

#### **Ascent**

- CRS provides push-off of at least 6 cm/s
- CRS push-off breaks cohesion and provides ascent  $\Delta V$  in single motion
- Attitude control in rate damping mode
- Minimal surface pluming until a minimum of 10 m off the surface (thrusters are 20 m off surface)
- At 50 m altitude closed loop attitude control is activated and reaction control system provides additional  $\Delta V$  to achieve escape velocity ( $\Delta V$  up to 20 cm/s)

#### Restraint

- Over 3 days allowed for ground to analyze collection data and restraint process
- Each step of the restraint process is ground commanded
- One joint of one leg is moved at a time
- Each joint is cycled until contact with all planned segments is achieved
- All joints are tightened to provide small pre-load to finalize a secure restraint
- Full process takes ~30 minutes (operations time only)

# Planetary Defense Demonstration



### Enhanced Gravity Tractor (EGT)

- Performed post-boulder collection, boulder provides the "enhanced" mass
- ARV establishes and maintains halo orbit and/or asteroid-velocity-direction standoff
- Demonstrates challenging extended duration operations in close proximity
- Induces a measureable deflection of the parent asteroid
- Deflection verification can be performed locally with ARV, or potentially with Earth-based radar after the mission





**Enhanced Gravity Tractor (EGT)** 

# ARRM Concept Vehicle





# Capture Module Overview





Capture arms (2X) and tool stowage (2X)



(CRS)

### **Relative Navigation Subsystem (RNS)** Deck sensor assembly and

gimbal sensor suite (shown stowed)

### Relative Navigation Subsystem (RNS)



### **Subsystem overview**

- Ground processing: ~1cm res. map of boulder site
- Onboard processing: precision landing over boulder
- Fault tolerant sensors: Narrow (NFOV), Medium (MFOV), and Wide (WFOV) cameras, LIDAR system
- 6-DOF navigation algorithms hosted on hybrid HW/SW compute platform
  - Flash Pose (FPOSE) for use with the 3D LIDAR
  - Terrain Relative Navigation (TRN) for use with optical images
- Two estimation algorithms functionally redundant, providing independent estimates of vehicle state

#### Range to Asteroid 10 km 10 Mm 100 m **DSN State Vector Diff** OnBoard GN&C (ProxOps) Stellar OpNav Stereophotoclinometry (SPC) Narrow FOV Vis (0.5°) 1cm Survey Stellar OpNav SPC Medium FOV Vis (10°) >1cm Survey Wide FOV Vis Terrain Relative Navigation (TRN (35°) Range LIDAR (20°) **FPose**

- Sensors will meet NASA Common AR&D Sensor spec
- High Speed Processor, relative navigation filter,
  FPOSE developed under satellite servicing Raven and
  Restore missions and directly applicable for ARRM
- Optical TRN derived from ground-based processing used on several missions, leverages Raven/Restore vehicle relative navigation algorithm (GNFIR)



Raven AR&D testbed (will launch to ISS in 2016)

### Contact and Restraint Subsystem (CRS)







Prototype full-scale CRS limb

#### Subsystem overview

- Performs touchdown, ascent, and boulder restraint
- Three 4-DOF ~5 meter long truss legs with integrated linear actuators
- Footpads with accommodation for Geological Context Sampler (GCS)
- Designed to accommodate crew translation, including Body Restraint Tether (BRT) attachments

- No new technologies required for implementation
- Design allows 1g engineering performance testing and validation







### Robot Subsystem



#### **Subsystem overview**

- 7-Degree-of-Freedom (DOF) robot arm with supporting electronics
- Advanced Tool Drive System (ATDS) at end of robot arm supports use and change out of multiple tools during the mission
- Common control electronics and software

- Derived from DARPA/FREND arm
- Build-to-print common design with Restore
- Flight-proven design and implementation heritage from Mars Exploration Rovers,
   Mars Phoenix, and Mars Science Laboratory
- Leverages investment from DARPA/NASA
- Based on ARRM mission requirements, updated arm common spec to include accommodation for locking brakes to increase load capability
- Restore FDU delivered June 2015







Capture arm EDU – direct heritage from FREND, synergy with Restore-L

### Robot Subsystem - Microspine Gripper





Microspine gripper



Carriage (1 of 24)

# Tool overview

- Uses ~2000 independent hooks to opportunistically grip the surface
- Fast release capability
- Integrated rotary-percussive anchoring drill augments Microspine grip capability
  - Design update from risk reduction

- TRL 5 gripper and TRL 5 anchoring drill
- Prototypes completed and characterized separately with industrial robot arms
- Initial integration feasibility demonstrated with Microspine "1.0" prototype and commercial drill



Microspine (1 of 652)



Microspine 1.0 and integrated drill

### Capture System Risks, Uncertainties, Sensitivities



- Previous SBAG findings provided key assistance on formulating this concept, especially including:
  - Preferred asteroid type for ISRU and science relevance
  - Asteroid and boulder physical properties (composition, strength, etc)
  - Likelihood and diversity of boulders
  - Planetary defense and resource utilization recommendations

- Additional areas that SBAG can help with
  - Boulder-to-parent-body cohesion (details on next chart)
  - Boulder depth of bury
  - Additional input on likelihood of boulder fracturing, surface degradation
  - Dust environment

### **Extraction Force**



### Extracting the boulder from the parent asteroid

- The force required to extract boulder from asteroid drives design of Capture Module
- SBAG special action team: extraction force likely dominated by cohesive forces between the boulder and the parent asteroid
- Extraction force very sensitive to estimated cohesive force as boulder size and depth of bury increase
- Also sensitive to depth of bury
- Have engaged community to perform physicsbased simulations of boulder extraction to characterize force required to break cohesion
- Plan to validate simulations using extraction testbeds with regolith and boulder simulants
- Both activities would benefit from further engagement with the community



Boulder extraction simulation



KSC Swamp Works full-scale testing of boulder extraction7

