Planetary Science Division
Update to VEXAG

Jim Green
August 29, 2011
The Environment We Are In

Congress has started debating NASA’s budget for FY12
 • The House has a proposed NASA budget from its Subcommittee
 • We expect to be under a “Continuing Resolution” for the 1st Q of FY12

In the meantime PSD is developing its FY13 budget supported by activities delineated in the Planetary decadal
 • This is a critical time in securing our international partnerships

We are also aggressively pursuing a tighter connection with HEOMD (formally ESMD) over areas of overlap and interest

We are also engaging the Office of Chief Technologist for help in developing key technologies (Optical Comm, Aero-capture...)

Historic time in planetary science is now

Discoveries are happening almost daily - this is not by accident
NASA's Year of the Solar System Events

2010
• September 16 – Lunar Reconnaissance Orbiter in PSD
• November 4 - EPOXI encounters Comet Hartley 2
• November 19 - Launch of O/OREOS

2011
• February 14 - Stardust NExT encounters comet Tempel 1
• March 7 – Planetary Science Decadal Survey released
• March 17 - MESSENGER orbit insertion at Mercury
• May 5 - Selection of 3 Discovery-class missions for study
• May - Selection of the next New Frontier mission for flight, OSIRIS-Rex
• July 16 - Dawn orbit insertion at asteroid Vesta
• August 5 - Juno launched to Jupiter
• August 9 - Mars Opportunity Rover gets to Endeavour Crater
• September 8 - GRAIL launch to the Moon
• November 25 - Mars Science Laboratory launch to Mars
• December 31 - GRAIL-A orbit insertion at Moon

2012
• January 1 - GRAIL-B orbit insertion at Moon
• June 6 – Venus transits the Sun – focus the world’s attention on Venus!
• Mid-year - Dawn leaves Vesta starts on its journey to Ceres
• August - MSL lands on Mars
• August 27 – 50th Anniversary of Planetary Exploration – Mariner 2!

http://solarsystem.nasa.gov
<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flyby</td>
<td>Orbit</td>
<td>Lander</td>
<td>Rover</td>
<td>Return Sample</td>
</tr>
<tr>
<td>Mariner 2, 5, 10</td>
<td>Venera 9, 10, 15, 16</td>
<td>Venera 3 (crash landing)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Venera 11-14</td>
<td>Pioneer 12 (PV 1)</td>
<td>Venera 7-10, (11, 12), 13, 14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Galileo</td>
<td>Magellan</td>
<td>Pioneer 13 (PV 2; 1 entry survivor)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cassini</td>
<td>Venus Express</td>
<td>Venus Express (2016)*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MESSENGER</td>
<td>Akatsuki</td>
<td>Akatsuki (2016)*</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>VeGa 1, 2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Planetary Program Architecture
Recommended by the Planetary Decadal Survey

Large Missions ("Flagship"-scale)

"Recommended Program" (budget increase for JEO new start)
1) Mars Astrobiology Explorer-Cacher – descoped
2) Jupiter Europa Orbiter (JEO) – descoped
3) Uranus Orbiter & Probe (UOP)
4/5) Enceladus Orbiter & Venus Climate Mission

"Cost Constrained Program" (based on FY11 Request)
1) Mars Astrobiology Explorer-Cacher – descoped
2) Uranus Orbiter & Probe (UOP)

"Less favorable" budget picture than assumed (e.g., outyears in FY12 request)
Descope or delay Flagship mission

Discovery
$500M (FY15) cap per mission (exclusive of launch vehicle) and 24 month cadence for selection

New Frontiers
$1B (FY15) cap per mission (exclusive of launch vehicle) with two selections during 2013-22

Research & Analysis (5% above final FY11 amount then ~1.5%/yr)

Technology Development (6-8%)

Current Commitments (ie: Operating Missions)
Flagship Missions
(in priority order)

1. Begin NASA/ESA Mars Sample Return campaign: *Descoped Mars Astrobiology Explorer-Cacher/ExoMars*

2. Detailed investigation of a probable ocean in the outer solar system: *Descoped Jupiter Europa Orbiter (JEO)*

3. First in-depth exploration of an Ice Giant planet: *Uranus Orbiter and Probe*

4. Either *Enceladus Orbiter* or *Venus Climate Mission* (no relative priorities assigned)

- Intensive studies are now underway with #1 & #2 priorities the others will follow as budget permits
 - We should know within the next month if #1 is viable as a partnership with ESA
New Frontiers-4 Selection

- Select NF-4 from among:
 - Comet Surface Sample Return
 - Lunar South Pole-Aitken Basin Sample Return
 - Saturn Probe
 - Trojan Tour and Rendezvous
 - Venus In Situ Explorer

- No relative priorities among these are assigned

For NF-5:
- The remaining candidates from NF-4
- Io Observer
- Lunar Geophysical Network

- No relative priorities among these are assigned
Venus *In Situ* Explorer

Scientific Objectives:

- To compare Venus to other terrestrial planets, including Earth, Mars and Mercury, as well as planets recently discovered orbiting stars in other solar systems.

- To understand the physical and chemical reasons for Venus's runaway greenhouse gases and global warming. This may help scientists better understand the eventual fate of Earth.

Measurements:

- Measure lower atmosphere chemistry, including the isotopes and noble gases

- Measure the composition of the surface with unprecedented accuracy
Discovery Program

Mars evolution:
Mars Pathfinder (1996-1997)

Lunar formation:

NEO characteristics:
NEAR (1996-1999)

Solar wind sampling:
Genesis (2001-2004)

Comet diversity:
CONTOUR

Nature of dust/coma:
Stardust (1999-2006)

Comet internal structure:

Mercury environment:
MESSENGER (2004-2012)

Main-belt asteroids: Dawn

Lunar Internal Structure
GRAIL (2011-2012)
Mission: Comet Wirtanen rendezvous and landing mission using S/C. 4 sorties between 4.5 and 1.5 AU from Sun.

Goals:
- Map spatial heterogeneity of gas & dust emissions
- Surface solids
- Determine nucleus structure, geologic processes,
- coma mechanisms
- Document changes w/ increasing isolation

Instruments:
- HIRS- CHopper Infrared Spectrometer
- HIMS- CHopper Ion/Neutral Mass Spectrometer
- HI- CHopper Imager
- HEX- CHopper Heating Experiment
- PanCams- Panoramic Cameras

Mission Details:
- **Flight:** 2016 launch with Standard 4m LV, 34-day launch period
- **Mission:** 7.3-yr mission, 2022 rendezvous / science ops
- **Science Phase:** Remote survey and multiple *in situ* surface measurements
- **Cruise/Parked Ops:** Quiescent ops during cruise and between sorties, science data downlink
- **Spacecraft:** high-heritage spacecraft design, flight-proven components for reliability and long life, large systems margins, dust covers for robustness in cometary environment, two ASRGs supply continuous power during all mission phases
GEMS: GEophysical Monitoring Station
PI: Bruce Banerdt

<table>
<thead>
<tr>
<th>Mission Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flight: 3/2016 launch w/ELV, 4m fairing; 9/2016 landing; ~6.5 mo cruise, 1 Mars yr surface ops</td>
</tr>
</tbody>
</table>
| **Selected Systems Features (Phoenix-based design):**
 - **Cruise:** 3-axis stabilized, 3.2 m² UTJ solar array, X-band telecom;
 - **EDL:** Landing radar, UHF telecom;
 - **Surface:** 4.3 m² UTJ solar array, 2 Li-ion batteries, UHF telecom, Rad 750-based avionics |
| **Mass:** 597.6kg dry launch, margin ≥31% (depending on ELV) |
| **Surface Ops Energy:** 881Wh/sol, margin 180% |
| **Schedule:** 39 mo B/C/D, 98 days sched reserve |
| **Threshold Mission:** Descope: HP³, SEIS SP sensors |

<table>
<thead>
<tr>
<th>Payload</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seismic Experiment for Interior Structure (SEIS)</td>
</tr>
<tr>
<td>RotaHon & Interior Structure Experiment (RISE)</td>
</tr>
<tr>
<td>Heat Flow & Physical Properties Probe (HP³)</td>
</tr>
<tr>
<td>Instrument Deployment Arm (IDA)</td>
</tr>
<tr>
<td>Instrument Deployment Camera (IDC)</td>
</tr>
</tbody>
</table>

Mission & Science Team:
PI: Bruce Banerdt, JPL
PM: Tom Hoffman, JPL
Deputy PI: Sue Smrekar, JPL
Spacecraft: Lockheed-Martin (LM)
Operations: JPL/LM
Payload: JPL, IPGP (France), DLR (Germany)
Mission & Science Team:
- PI: Ellen Stofan, Proxemy
- Project Mgmt: APL
- S/C: LM
- Ops: LM, JPL (nav)
- Payload: APL, GSFC, MSSS
- Deputy PI: J. Lunine, UA
- Project Scientist: R. Lorenz, APL

Efficient Trajectory:
- Launch 2016
- Cruise 7.5 years (EGA, JGA)
- Entry 2023

Mission Features:
- Focused science objectives
- High-heritage instruments
- Simple cruise, no flyby science
- Simple surface operations
- ASRGs, launch vehicle are GFE
Discovery-12 Tech Development

- Primitive Material Explorer (PriME): Cometary Mass Spectrometer

- Whipple: Outer Solar System Object Blind Occultation Technique

- NEOCam: Near Earth Object Telescope Technology
New Frontiers Program

1st NF mission
New Horizons:
Pluto-Kuiper Belt
Launched January 2006
Arrives July 2015

2nd NF mission
JUNO:
Jupiter Polar Orbiter
Launched August 2011
Arrives July 2016

3rd NF mission
OSIRIS-REx
Asteroid Sample Return
Sept. 2016 Launch
OSIRIS-REx Asteroid Sample Return Mission

PI: Michael Drake (UA), PM: Robert Jenkens (GSFC)

Science Objectives:
– Return and analyze a sample of pristine carbonaceous asteroid
– Map the global properties, chemistry, and mineralogy
– Document in situ the properties of the regolith at the sampling site
– Measure the Yarkovsky effect and constrain the asteroid properties that contribute to this effect.
– Characterize the integrated global properties to allow comparison with ground-based telescopic data of entire asteroid population

Mission Overview:
– Launch in September 2016
– Encounter asteroid (101955) 1999 RQ36 in October 2019
– Study RQ36 for up to 505 days, globally mapping the surface
– Obtain at least 60 grams of pristine regolith/surface material
– Return sample to Earth in September 2023 in a Stardust-heritage capsule
– Deliver samples to JSC curation facility for world-wide distribution

Instruments:
– OSIRIS-REx Camera Suite (OCAMS) - UA
– OSIRIS-REx Laser Altimeter (OLA) - CSA
– OSIRIS-REx Visible and IR Spectrometer (OVIRS) - GSFC
– OSIRIS-REx Thermal Emission Spectrometer (OTES) - USA
– Spacecraft Telecom/Radio Science
– Touch-And-Go Sample Acquisition Mechanism (TAGSAM) – LM
– Regolith X-ray Imaging Spectrometer (REXIS) MIT (Student Collaboration Experiment)
International Activities

- PSD supporting Venus Express (ESA)

- JAXA’s Akatsuki (Venus Climate Orbiter) support from NASA will include navigation and DSN (on a non-interference basis)
Venus Research
Venus R&A Investments

- Keyword search in RAPTOR for all fields containing “Venus”
 - All awarded activities from FY05 – FY11
 - Invested >$25M in 70 funded activities over 5+ fiscal years

![Pie chart showing breakdown of funded activities by category]
Instrument Development Overview

Investments in Planetary Instrument Technologies

- Neptune Moons (Triton)
- Uranus Moons (Miranda, Ariel, Umbriel, Titania, Oberon)
- Saturn Moons (Mimas, Enceladus, Tethys, Dione, Rhea, Titan)
- Jupiter Moons (Io, Europa, Ganymede, Callisto)
- Neptune
- Uranus
- Saturn
- Jupiter
- Search for Life on Mars
- Understand Mars Processes and History of Climate
- Determine Evolution of Mars Surface and Interior
- Earth Moon
- Venus
- Mercury
- Meteorites and Interplanetary dust particles
- Moons of Mars
- Asteroids, Comets, Kuiper belt objects

[Bar chart showing investments in different planetary instrument technologies]
Venus In-Situ Chamber
Investigations (VICI)
aka Venus Pressure Test Chamber

Description – What is it?:

A small, high temperature, high pressure chamber to simulate environmental conditions on Venus’ surface.
(e.g., 740 K and 95.6 bar)

Will be included in ROSES-2012 as NASA operated equipment at GSFC
OC Natasha Johnson, natasha.m.johnson@nasa.gov

The Basics:

- Stainless Steel 316 Pressure Vessel
- Internal dimensions: diameter 12.7 cm (5 in) depth 30.5 cm (12 in)
- Monitored via NI LabView
- Operating parameters:
 - Max pressure 96 bar
 - Temp range 298K – 740K
 - Gases: CO₂, N₂, SO₂ (ppm) or mixture

Objectives

- Test instruments and/or components to be proposed for Venus missions (i.e., Discovery/New Frontiers)
- Conduct Venus appropriate experiments (e.g., surface-atmosphere reactions)
- Explore different chamber configurations for a range of experimental options
“Flyby, Orbit, Land, Rove, and Return Samples”

NASA’s

Planetary Science

Advance scientific knowledge of the origin and history of the solar system, the potential for life elsewhere, and the hazards and resources present as humans explore space.