Venus Environmental Test Facility Capability List

Rodger Dyson and Natasha Johnson March 9, 2012

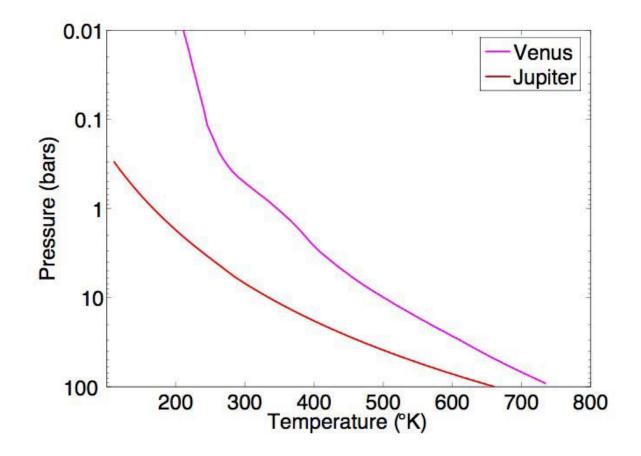
Selection Criteria

- Previous Venus missions were primarily tested in only a Nitrogen environment notwithstanding Goddard's CO₂ instrumentation test rig (circa 1974). Future missions will be tested with Venus in-situ chemical species composition, temperatures, and pressures to some level of fidelity at various altitudes.
- The following matrix only includes such in-situ test facilities that support a Venus atmosphere:

Location	Volume (ft³)	Dimensions (ft by ft)	Pressure (bar)	Temperature (°C)	Species	Notes	Public/ROSES Availability
NASA JPL	0.0009	.049 by .49	1 to 1000	20 to 1000	CO ₂ , N _{2,} SO ₂	Accelerated Weathering	Yes
MIT	0.001	0.04 by 1	1 to 200	20 to 700	CO ₂	Pressure or temperature	No
LANL	0.005	0.04 by 1	1 to 10,000	20 to 150	CO ₂	LIBS/RAMAN	No
Univ. of Wisconsin	0.008	0.05 by 1	1 to 270	20 to 650	CO ₂	DOE Reactor Corrosion	No
MIT	0.02	0.08 by 4	1 to 200	20 to 700	CO ₂	Pressure or temperature	No
NASA GSFC	0.13	0.41 by 1	1 to 95.6	20 to 500	CO ₂ , N ₂ , SO ₂	Materials	Yes
NASA JPL	0.45	0.33 by 5.25	1 to103	20 to 500	CO ₂ , N ₂ ,H ₂ 0, SO ₂ , CO, He, Ne, Ar	RLVT, Optical Access	Yes
NASA JPL	0.5	.59 by 1.83	1 to 103	20 to 500	CO ₂ , N ₂ ,H ₂ 0, SO ₂ , CO, He, Ne, Ar	VMTF, Materials and Small Systems	Yes
Georgia Inst of Technology	1.05	1.16 by 1	1 to 100	20 to 343	CO ₂ , N ₂	Higher altitude only	No
NASA Glenn	5.30	1.5 by 3	1 to 100	20 to 500	CO ₂ , N ₂ , SO ₂	Any altitude, Under Construction	Yes (Fall 2012)
NASA Glenn	28.3	3 by 4	10 ⁻³ to 103	20 to 537	CO ₂ , N ₂ , SO ₂ , Ar, H ₂ O, CO, He, Ne, OCS, HCl, HF	Any altitude, Optical Access, Under Construction	Yes (Fall 2012)

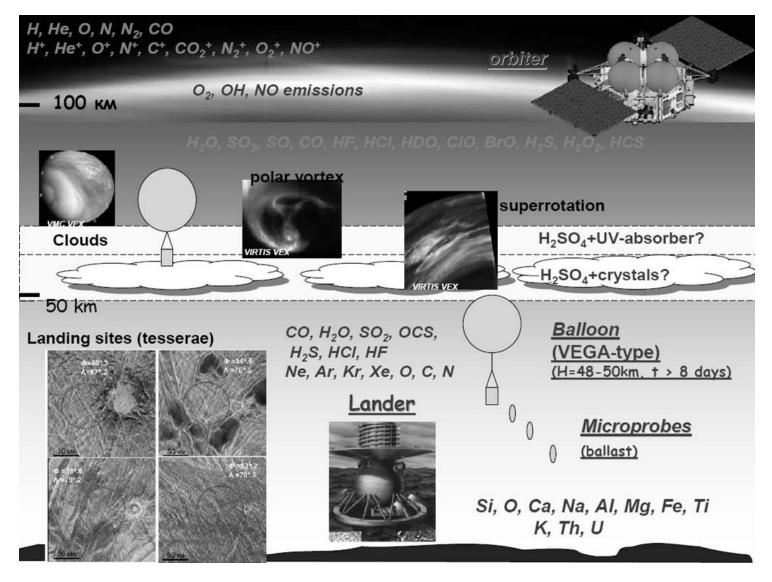
Additional Venus Related Facilities

- Atmospheric entry arc jet facilities are being modified to include CO₂ at NASA JSC and Ames to support Mars and potentially Venus thermal ablation testing
- ESA also has entry simulation facilities
- Other facilities exist that simulate viscosity, temperature, and pressure but not in a Venus atmosphere.


International

- Proposed University College London, Mullard Space Science Laboratory, Ward & Muller
- VENERA-D needs one (Vega version fell in disrepair), proposing partnering with China
- No other facility known

Capability Gaps


- High speed atmospheric wind and aeolian dust entrapment at surface (limited to 30 bar, 30°C at Ames)
- Vehicles larger than 3' diameter by 4' length
- Time-accurate Entry, Descent, Landing
- Cosmic radiation effects (i.e. lightning or other anomalies)
- Full atmospheric entry heating/velocity conditions

Time Accurate Entry Conditions

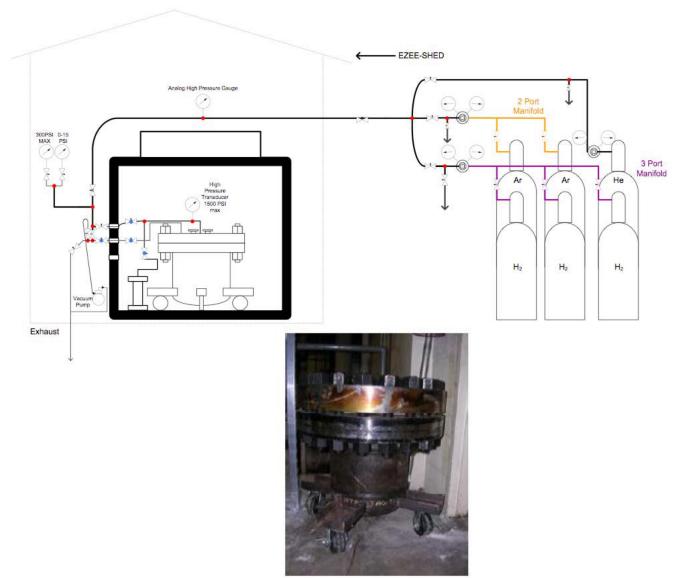
Ref. Bryan M. Karpowicz*, Paul G. Steffes+, and Thomas R. Hanley+

Atmospheric and Dust Composition

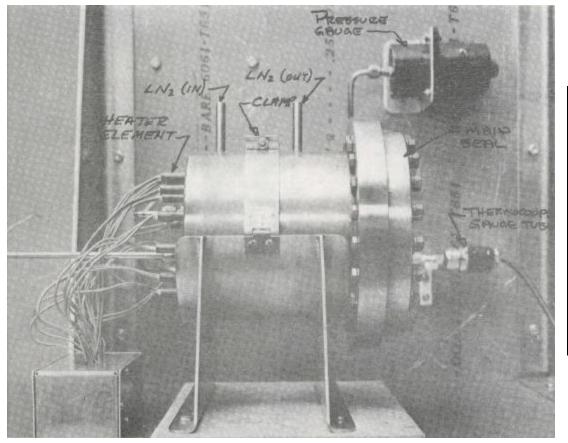
Background Slides

MIT

.04 ft by 1 ft


.08 ft by 4 ft

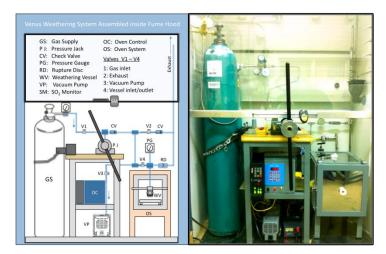
University of Wisconsin


DoE-NEUP project for Nuclear Reactor

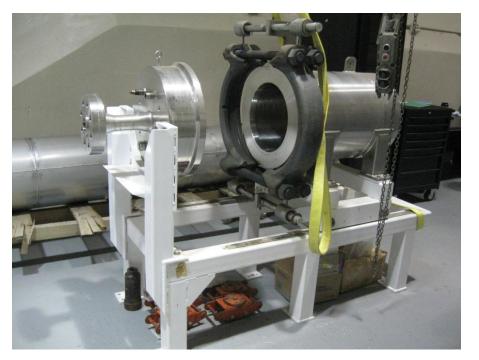
Georgia Tech

Goddard

Ref. Johnson, CO2, N2, Steady-state


Ref. Cridlin and Munford, CO2, Time Accurate for Pioneer-Venus

JPL


Venus Testbed for Raman and LIBS (VTRL)

Venus Weathering Facility (VWF)

Venus Materials Test Facility (VMTF)

Glenn

1.5 ft by 3 ft

3 ft by 4 ft

Defunct Facilities

- LT-HP Venus Wind Tunnel at NASA Ames
- Wichita, Kansas -- Small diameter pipe
- VEGA Chamber in Russia
- Pioneer-Venus Chamber at Goddard

References

- <u>http://www.planetaryprobe.org/SessionFiles/Session4/</u> <u>Presentations/9 Del Papa ARMSEF CO2.pdf</u>
- http://www.hindawi.com/journals/ijae/2011/937629/
- <u>http://vfm.jpl.nasa.gov/files/EE-Report_FINAL.pdf</u>
- <u>https://docs.google.com/file/d/1Vw9uBB0OMtaODUjd</u> <u>4LgQ8B88oYFURu7PzrADAIVSGG7oo4LLLIsL2G3MPCF/</u> <u>edit?pli=1</u>
- Personal communication and online sources.