Space Technology Pipeline

Game Changing Development
- Game Changing Development Program
- SBIR Program Phase III

New Technology Partners
- Flight Opportunities Program
- Centennial Challenges Program
- Small Spacecraft Technologies Program

Early Stage
- NASA Innovative Adv Concepts Program
- Space Tech Research Grants Program
- Center Innovation Fund Program
- SBIR Program Phases I & II

Low TRL

Mid TRL

High TRL

Technology Demonstrations
- Technology Demonstration Missions Program
• Alignment with NASA mission needs
 – Human Exploration and Operations Mission Directorate near- and long-term priorities
 – Science Mission Directorate technology development partnerships
 – Aeronautics Research Mission Directorate technology investments

• Supporting commercial space technology needs
 – Cross-cutting technologies of significant benefit to industry
 – Potential for public / private partnerships

• Promoting early-stage technologies and innovations
 – Strengthening NASA relationships with academia
 – Leveraging small business and NASA center innovation

• Engaging emerging space technology partners and businesses
 – Challenge competitions and public / private partnerships with new partners
 – Partnerships with other government agencies
• NASA Innovative Advanced Concepts
 – System-level concept studies of visionary ideas for radically better or entirely new aerospace concepts

• Space Technology Research Grants
 – Engage academic researchers (students & faculty) in accelerating development of low-TRL technologies

• Small Business Innovation Research / Small Business Technology Transfer
 – Participation in government-sponsored R&D by small, high-tech companies and research institutions

• Center Innovation Fund
 – Stimulate and encourage creativity and innovation within NASA Centers

• Game Changing Development
 – Rapidly mature innovative, high-impact capabilities and technologies

• Centennial Challenges
 – Offer incentive prizes to generate revolutionary solutions from diverse sources to problems of interest

• Flight Opportunities
 – Develop and provide suborbital flight opportunities to validate technologies in relevant environments

• Small Spacecraft Technology
 – Develop and demonstrate new capabilities employing the unique features of small spacecraft

• Technology Demonstration Missions
 – Conduct subsystem-level ground and flight demonstrations validating technologies for mission infusion
Selected Current STMD Projects Potentially Related to Venus Exploration

• **Space Technology Research Grants**
 – Robust electrical contacts for sensors and electronics in space flight
 – Micro-scale gallium nitride pressure sensors for advanced harsh environment space technology
 – Guidance and control for entry vehicles with deployable hypersonic decelerators

• **Small Business Innovation Research / Small Business Technology Transfer**
 – Venus altitude cycling balloon
 – Measurement of trace gases in the atmosphere of Venus
 – High temperature Venus drill and sample delivery system
 – Low power nonvolatile memory for extreme environments
 – Harsh environment gas sensor array for Venus atmospheric measurements
 – Extreme environment sampling system deployment mechanism
 – Extreme environment hybrid gearbox technology
 – Extreme environment ceramic-to-metal seal
 – Wide temperature DC link capacitors for aerospace power electronics
 – Radiation / temperature hardened advanced readout array with dynamic power modes
 – Physics-based modeling tools for life prediction and durability assessment of advanced materials

• **Center Innovation Fund**
 – New power sources for Titan and Venus surface missions (JPL Workshop)

• **Game Changing Development**
 – Adaptive deployable entry and placement technology (ADEPT)
 – Heat shield for extreme entry environment technology (HEEET)
 – Hypersonic inflatable aerodynamic decelerator (HIAD)
 – Deep space optical communication
Selected Completed STMD Projects Potentially Related to Venus Exploration

• NASA Innovative Advanced Concepts
 – Venus landsailing rover

• Space Technology Research Grants
 – Robust electrical contacts for sensors and electronics in space flight
 – Micro-scale gallium nitride pressure sensors for advanced harsh environment space technology
 – Guidance and control for entry vehicles with deployable hypersonic decelerators

• Small Business Innovation Research / Small Business Technology Transfer
 – Aerogel insulation for the thermal protection of Venus spacecraft
 – Brushless DC motor and resolver for Venusian environment
 – Harsh environment gas sensor array for Venus atmospheric measurements
 – High temperature acid resistant balloon
 – High temperature all silicon carbide DC motor drives for Venus exploration vehicles
 – High temperature battery for in situ exploration of Venus
 – High Temperature capacitors for Venus exploration
 – High temperature telemetry transmitter for Venus exploration
 – Sapphire viewports for a Venus probe
 – Solid state vacuum device extreme temperature electronics for planned Venus missions
 – Thermal management system for long-lived Venus landers
 – Thermoacoustic duplex technology for cooling and powering a Venus lander

• Center Innovation Fund
 – Transformable entry system technology applicability to robotic Venus science missions
 – Innovative concept for Venus surface cooling system using atmospheric reformation
 – Woven TPS – a revolutionary approach to tailorable TPS design & manufacturing
Potential STMD Entry Points for Venus Exploration Community

• Engage STMD Principal Technologists in formulating new projects
 – Nine full-time technical experts and advocates covering nearly all of the space technology landscape
 – Their main role is developing and reviewing investment strategies across the full TRL pipeline

• Utilize Space Tech Research Grants program to engage the academic community
 – NASA Space Technology Research Fellowships for graduate students
 – Early Career Faculty awards via annual solicitations in specific topic areas
 – Early Stage Innovations awards via annual solicitations in specific topic areas

• Develop specific SBIR / STTR topics in conjunction with SMD and STMD

• Formulate targeted Centennial Challenge project focused on key capability

• Pursue Game Changing Development program solicitations on specific technologies

SMD advocacy for new Venus-related solicitations would be critical and co-funding would be highly desirable
<table>
<thead>
<tr>
<th>Technology Domain Area</th>
<th>Name</th>
<th>Contact Info</th>
</tr>
</thead>
<tbody>
<tr>
<td>Robotics & Autonomous Systems</td>
<td>Rob Ambrose</td>
<td>281-244-5561 robert.o.ambrose@nasa.gov</td>
</tr>
<tr>
<td>Life Support & Human Health; In-Situ Resource Utilization; Thermal Management</td>
<td>Molly Anderson</td>
<td>281-483-9149 molly.s.anderson@nasa.gov</td>
</tr>
<tr>
<td>Avionics; Electronic Sensors; Radiofrequency Communication; Information Technology</td>
<td>Steve Horan</td>
<td>757-864-6986 stephen.j.horan@nasa.gov</td>
</tr>
<tr>
<td>Launch & Spacecraft Systems; Advanced Propulsion; Science Instruments</td>
<td>Ron Litchford</td>
<td>256-544-1740 ron.litchford@nasa.gov</td>
</tr>
<tr>
<td>Structures; Materials; Mechanical Systems</td>
<td>David McGowan</td>
<td>757-864-4916 david.m.mcgowan@nasa.gov</td>
</tr>
<tr>
<td>Entry, Descent, and Landing</td>
<td>Michelle Munk</td>
<td>757-864-2314 michelle.m.munk@nasa.gov</td>
</tr>
<tr>
<td>Optics & Space Observatories; Optical Communication; Radiation Protection</td>
<td>Denise Podolski</td>
<td>202-358-1504 denise.a.podolski@nasa.gov</td>
</tr>
<tr>
<td>Advanced Manufacturing; Nanotechnology</td>
<td>LaNetra Tate</td>
<td>202-358-1071 lanetra.c.tate@nasa.gov</td>
</tr>
<tr>
<td>In-Space Propulsion; Power & Energy Storage</td>
<td>Chuck Taylor</td>
<td>757-864-1034 charles.b.taylor@nasa.gov</td>
</tr>
</tbody>
</table>
Space Technology Strategic Themes

Get There
Improve the ability to efficiently access and travel through space

Land There
Enable the capability of landing more mass, more accurately, in more locations throughout the solar system

Live There
Make it possible to live and work in deep space and on planetary bodies

Observe There
Transform the ability to observe the universe and answer the profound questions in Earth and space sciences

Invest Here
Enhance the nation’s aerospace capabilities and ensure its continued technological leadership