Venus: The Nearby Exoplanet Laboratory

Stephen Kane

Giada Arney
David Crisp
Shawn Domagal-Goldman
Lori Glaze
Colin Goldblatt
David Grinspoon
James Head
Adrian Lenardic
Cayman Unterborn
Michael Way
Venus: The Making of an Uninhabitable World

Stephen R. Kane (UC Riverside), Giada Arney (NASA GSFC), David Crisp (JPL), Shawn Domagal-Goldman (NASA GSFC), Lori S. Glaze (NASA GSFC), Colin Goldblatt (University of Victoria), Adrian Lenardic (Rice University), Cayman Unterborn (Arizona State University), Michael J. Way (NASA GISS)

Venus: The Nearby Exoplanetary Laboratory

Stephen R. Kane (UC Riverside), Phone: 951-827-6593, Email: skane@ucr.edu

Co-authors: Giada Arney (NASA GSFC), David Crisp (JPL), Shawn Domagal-Goldman (NASA GSFC), Lori S. Glaze (NASA GSFC), Colin Goldblatt (University of Victoria), David Grinspoon (Planetary Science Institute), James W. Head (Brown University), Adrian Lenardic (Rice University), Cayman Unterborn (Arizona State University), Michael J. Way (NASA GISS)

Co-signers: Vladimir Airapetian (NASA/GSFC & American University), Ariel Anbar (Arizona State University), David Brain (University of Colorado), Shannon Curry (UC Berkeley), William Danchi (NASA/GSFC), Anthony Del Genio (NASA/GISS), Steven Desch (Arizona State University), Chuanfei Dong (Princeton University), Theresa Fisher (Arizona State University), Jonathan Fortney (UC Santa Cruz), Peter Gao (UC Berkeley), Dawn M. Gelino (NExScI), Gabriella Gilli (IA - FCUL), Guillaume Gronoff (SSAI/NASA LaRC), Scott Guzewich (NASA/GSFC), Hilary E. Hartnett (Arizona State University), Nicholas G. Heavens (Hampton University), Wade G. Henning (NASA GSFC/University of Maryland), Noam R. Izenberg (Johns Hopkins University APL), Daniel Jontof-Hutter (University of the Pacific), Ravi Kopparapu (NASA/GSFC), Carey Lisse (Johns Hopkins University APL), R. O. Parke Loyd (Arizona State University), Vladimir Lyra (CSU Northridge), Avi M. Mandell (NASA/GSFC), Mark Marley (NASA/Ames), Pedro Machado (IA - FCUL), Kathleen Mandt (Johns Hopkins University APL), William B. Moore (Hampton University), Joseph G. O’Rourke (Arizona State University), Joe P. Renaud (George Mason University), Tyler D. Robinson (Northern Arizona University), Andrew J. Rushby (NASA/Ames), Laura Schaefer (Arizona State University), Caleb Scharf (Columbia University), Edward W. Schwieterman (UC Riverside), Everett L. Shock (Arizona State University), Harrison B. Smith (Arizona State University), Linda E. Sohl (Columbia University & NASA/GISS)

White paper submitted in response to the solicitation of feedback for the “Exoplanet Science Strategy” by the National Academy of Sciences.
“If Venus did not exist in our solar system, we would not dare to imagine it”
- Francois Forget
New Kepler Planet Candidates

As of July 23, 2015

Size Relative to Earth (Radius)

Orbital Period in Days

Total = 4,696
New Kepler Planet Candidates
As of July 23, 2015

Total = 4,696
The Venus Zone

- Outer edge defined by runway greenhouse
- Inner edge defined by atmospheric mass loss

The Venus Zone

- Define $\eta(\text{Venus})$ as fraction of stars with at least one terrestrial planet within the Venus Zone

- For M stars: $\eta(\text{Venus}) = 0.32 \pm 0.05/0.07$
- For GK stars: $\eta(\text{Venus}) = 0.45 \pm 0.06/0.09$

Venus/Earth Spectra

Table 1

System Parameters for Kepler-1649

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transit and Orbital Parameters</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Orbital period P (d)</td>
<td>8.689090 ± 0.000024</td>
<td>A</td>
</tr>
<tr>
<td>Midtransit time E (HJD)</td>
<td>2454966.2348 ± 0.0026</td>
<td>A</td>
</tr>
<tr>
<td>Scaled semimajor axis a/R_*</td>
<td>60.6 ± 8.1</td>
<td>A</td>
</tr>
<tr>
<td>Scaled planet radius R_p/R_*</td>
<td>$0.0391^{+0.0014}_{-0.0022}$</td>
<td>A</td>
</tr>
<tr>
<td>Impact parameter $b = a \cos i/R_*$</td>
<td>$0.34^{+0.15}_{-0.34}$</td>
<td>A</td>
</tr>
<tr>
<td>Orbital inclination i (deg)</td>
<td>89.57 ± 0.32</td>
<td>A</td>
</tr>
<tr>
<td>Derived stellar parameters</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Effective temperature T_{eff} (K)</td>
<td>3240 ± 61</td>
<td>B</td>
</tr>
<tr>
<td>Spectroscopic gravity $\log g$ (cgs)</td>
<td>4.98 ± 0.22</td>
<td>B</td>
</tr>
<tr>
<td>Metallicity [Fe/H]</td>
<td>-0.15 ± 0.11</td>
<td>B</td>
</tr>
<tr>
<td>Mass M_* (M_\odot)</td>
<td>0.219 ± 0.022</td>
<td>C</td>
</tr>
<tr>
<td>Radius $R_* ($$R_\odot$)</td>
<td>0.252 ± 0.039</td>
<td>C</td>
</tr>
<tr>
<td>Planetary parameters</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radius R_p (R_\oplus, equatorial)</td>
<td>1.08 ± 0.15</td>
<td>A,B,C</td>
</tr>
<tr>
<td>Orbital semimajor axis a (AU)</td>
<td>0.0514 ± 0.0028</td>
<td>D</td>
</tr>
<tr>
<td>Incident Flux (S_\oplus)</td>
<td>2.30 ± 0.65</td>
<td>D</td>
</tr>
</tbody>
</table>

Note. —

A: Based on *Kepler* photometry.
B: Based on an analysis of the Palomar spectra.
C: Based on stellar evolution tracks.
D: Based on Newton’s version of Kepler’s Third Law and total mass.
Kepler-1649b: A Possible Venus Analog

SURFACE AIR TEMPERATURE

SURFACE AIR TEMPERATURE (C)

Data Min = 70.6, Max = 287.0, Mean = 128.7

Transiting Exoplanet Survey Satellite (TESS)
Transiting Exoplanet Survey Satellite (TESS)

Transiting Exoplanet Survey Satellite (TESS)

Venus Zone

C3PO
- 3 year ext
- 1 year ext
- primary mission

The Exoplanet Case for Venus

Stephen R. Kane¹, Giada Arney², David Crisp³, Shawn Domagal-Goldman⁴, Lori S. Glaze⁵, Colin Goldblatt⁶, David Grinspoon⁷, James W. Head⁶, Adrian Lenardic⁷, Cayman Unterborn⁸, Michael J. Way⁹

¹ University of California, Riverside, CA, 92521
² NASA GSFC
³ JPL, Pasadena
⁴ University of Victoria, Canada
⁵ Planetary Science Institute, Tucson, AZ
⁶ Brown University, Providence, RI
⁷ Rice University
⁸ Arizona State University
⁹ NASA GISS

Submitted for publication in Journal of Geophysical Research: Planets

Corresponding author: Stephen R. Kane (skane@ucr.edu)

Key points:
1. The field exoplanetary science is now routinely providing discoveries of terrestrial-size planets and the characterization of their structure and atmospheres is becoming a primary focus.
2. The boundaries of habitability are best understood through the study of the extreme environments present on Earth and Venus.
3. There are many outstanding questions regarding our sister planet Venus that are critical to answer in order to better constrain models for exoplanets.