Venus Exploration Targets Workshop: A Retrospective

Organizing Committee:
Buck Sharpton
Lori Glaze
Larry Esposito
Kevin McGouldrick
Stephanie Johnston
Chris Lee
Christophe Sotin
Marty Gilmore
Robbie Herrick

May 19-21, 2014
Lunar and Planetary Institute
Organizing Committee launched 5 Sept. 2013
- Workshop dates set: 19-21 May 2014
- Program designed; announcements circulated
- Invited Venera D project scientists from Russia and US

- Implementation & Science Teams off to the races

Geopolitical tensions mount: March, 2014
- Russian participants unable to attend workshop

Nonetheless, the workshop attracted 51 participants from around the globe.
To identify and evaluate key locations, transects, and regions for future exploration of Venus.

- On the surface or within the atmosphere
- Appropriate candidate targets include those requiring
 - landers,
 - atmospheric probes, gliders, or balloons, and
 - orbital missions.
Day 1:

- AM: Introductory Plenary, including short ‘poster’ talks
 - Opportunity for everyone to present orally
- PM: Poster discussion followed by first breakout session
 - Breakouts organized around where the payload would be located: on the surface, in the atmosphere, from orbit
 - First effort to define targets to meet VEXAG GOI
 - Encouraged participants to circulate between sessions
Workshop Structure

• Day 2:
 – Morning Plenary
 • Session leads summarized Day 1 progress
 – Morning Breakout Session
 • Continue to define targets
 • Consider approaches needed at each target
 – Afternoon Plenary
 – Afternoon Breakout Session
 • Continue discussions; add data requirements
Workshop Structure

- Day 3:
 - Capstone Plenary
 - Extended discussion of workshop progress
 - Adjourned at Noon
 - PM: Organizers convened to discuss results & path forward.
• **Surface:**
 - Significant science achievable from low-risk areas such as plains
 * Meets majority of objectives in VEXAG Goals 2 & 3
 * Improved measurements of crust and lower atmosphere
 * Safest: older plains devoid of ejecta, deformation features

 - **Tessera lander site would be scientifically optimal but more risky; risk mitigated by:**
 * High-resolution imaging and topography
 * Autonomous hazard avoidance technologies
• **Atmosphere:**

 – Challenged by the complex matrix of ‘domains’:
 • Geographic location \((x, y)\), height, time, duration
 • No single, static ‘target’ is adequate

 – Long-term, high spatial and temporal measurement of meteorological parameters is ideal but unrealistic.
 • Group focused on prioritizing among domains.

 – Can make remote surface observations from low altitude.

 – Many target and approach suggestions would benefit from coincident orbital observations.
• Orbit:
 - Indirect but provide important regional context for in situ measurements
 • Conversely, remote observations benefit from ground truth
 - Technological advances offer vast improvements over current surface observations
 • E.g., SAR image resolution; interferometry, stereogrammetry, IR emissivity.
 - Surface targets were identified and atmospheric approaches were addressed.
• Report is being compiled now (some delay owing to Discovery proposals)
• Report will be vetted by the community (specific reviews and community comment)
• When completed, will be posted on the VEXAG website
• Orbital science, atmospheric payloads, and landers are synergistic and complementary.
 – All are required to address the panoply intriguing questions surrounding the past and current state of Venus.

• A Venus Exploration Program – designed along the lines of MEP – is needed to bring Venus exploration to the level of Earth’s other planetary neighbors.

• Perhaps *Discovery* and/or *New Frontiers* will spearhead this program.