LONG-LIVED IN-SITU SOLAR SYSTEM EXPLORER (LLISSE)

LLISSE

LLISSE BASICS

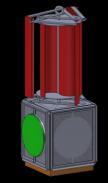
- LLISSE is a small (~10kg) probe being developed to acquire and transmit simple but important science measurements for extended periods from the surface of Venus
 - Scale driven to fit Venus balloon payload expectations could be larger / heavier for longer life or more capable science package
- Three key elements are being leveraged to enable this revolutionary capability
 - Recent developments in high temperature electronics
 - Focused, low data volume measurements
 - Novel operations scheme

FOCUSED SCIENCE GOALS

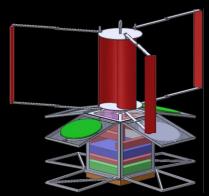
- Estimate moment exchange between planet and atmosphere
- Quantify near surface atmospheric chemistry variability
- Acquire temporal weather data to update global circulation models
- Technology demonstration for more capable future lander missions

SCIENTIFIC MEASUREMENTS

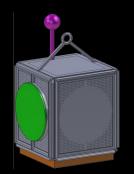
- Surface wind speed
- Wind direction (relative to surface)
- Surface temperature and pressure
- Near-surface atmospheric chemical composition
- Incident radiance ?
- Measured over long time scales -
- Operations Goals:
 - Operate for a minimum of one Venus "daylight period" and day/night transition (~60 Earth days)
 - Take / transmit measurements periodically timed for science need and to maximize transfer to orbiter / data relay


TWO VERSIONS IN WORK

Basic Features


- Deployed from balloon, with lander, or via own entry shell
- Two approaches in work: battery & wind powered
- Battery version: 3000 hrs if data sent for 2 minutes every 8 hours

variable data transmission


frequency possible

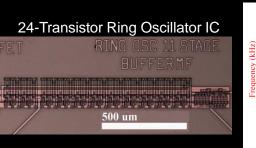
~ 20 cm cube

Wind powered version -?? Hours, ~10 kg transmission frequency is power dependent

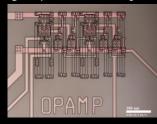
~ 20 cm cube

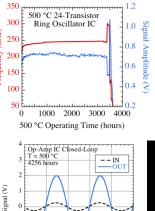
Battery Version -3000 hours, $\sim 10 \text{ kg}$

ENABLING CAPABILITIES

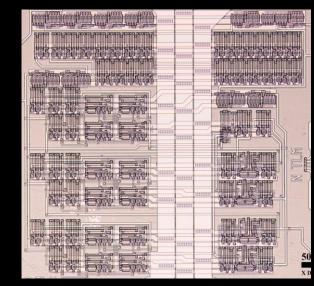

- High temperature:
 - Sensors
 - Electronics
 - Communication system
 - Power generation / storage system
- High fidelity test / validation capability
- Creative operations approach

READINESS OF COMPONENTS


• High Temp electronics


- World's First Microcircuits at moderate complexity fabricated with long-lived operation at 500°C
- SiC Integrated Circuits that function for thousands of hours at 500°C have been demonstrated
 - Amplifiers, converters, logic, and more
- A tool-box of signal conditioning, processing, and communications circuits are being developed and demonstrated (presently 100+ transistor ICs)
- Direct pathway to more complex circuits identified
- Successful operation of SiC Integrated Circuits electronics for over 21 days achieved in the GEER chamber under Venus simulated surface environments (submitted to peer review journal)

READINESS OF COMPONENTS

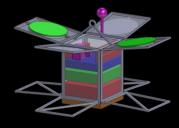


2-Stage Operational Amplifier IC

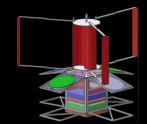
Time (msec

Long-Lived Electronics Operation

Multispecies Chemical Sensor Probe



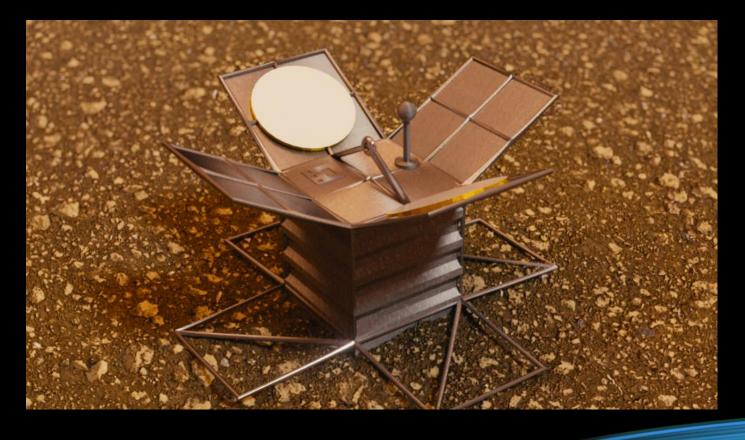
High Temperature Pressure Sensor

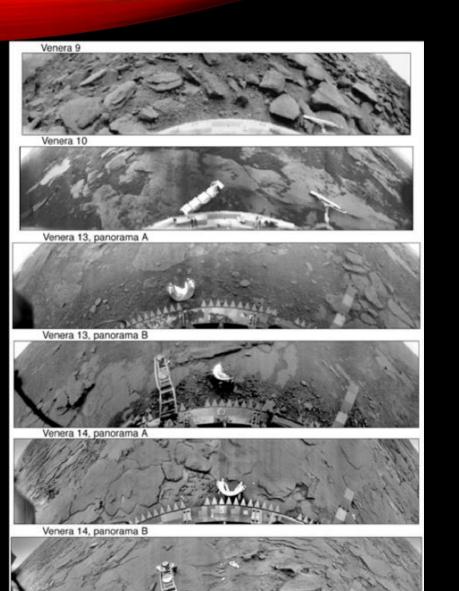

- Component level hardware exists and performance has been demonstrated at Venus temperatures
 - High temperature electronics
 - Multispecies chemical sensor array
 - High temperature pressure and temperature sensors

PROJECT OBJECTIVES

- Develop full/half scale prototype probes (one battery and one wind powered) and demonstrate performance in Venus conditions in GEER
 - Wind version would be tested with simulated winds in GEER
 - Take science measurements and transmit
- Complete performance test of full scale prototype model running 10 MHz comm system within 3 years
- Complete turbine and test half scale version 18 -24 months later

Focus in FY17-19




Focus in FY20-21

CONSIDERATIONS

- Data captured and transmitted in real time not stored
- Battery version more mature comm system driven
- Wind powered version maturity is turbine system driven
- Battery version is simple with long life but not indefinite
- Wind powered version is higher risk and transmission could be variable (depends on surface wind speeds)
 - However a strong step toward future surface exploration

BACK-UP

KNOWN MEASUREMENTS OF VENUS SURFACE WINDS SPEEDS (FROM VENERAS)

9:0.4-0.7 m/s

- •10: 0.8 m/s 1.3 m/s
- •13 0.5 m/s
- •14 0.3-.35 m/s

WIND SPEED VS POWER GENERATED

Venus wind speed (m/s)	.35	.4	.5	.6	1	1.25	1.5	1.8
RPM	50	57	72	86	143	179	215	258
Power from	.05	.06	.09	.13	.37	.57	.83	1.2
generator (W)								
Time to charge	13.8	8.1	4	2.5	.8	.5	.3	.2
battery (h)								
Min coeff. of friction	.02	.02	.04	.05	.14	.22	.32	.46
(for probe stability)								