


Venus Smallsat and Cubesat Missions

James Cutts, Alan Didion, Attila Komjathy,
Christophe Sotin and Mark Wallace
Jet Propulsion Laboratory, California Institute of
Technology, Pasadena, California

Fourteenth VEXAG Meeting, 2016

Nov 29 to Dec 1, 2016

Topics

- Opportunity
- Challenges
- Rideshare options to Venus
- Infrared monitoring of Venus from circular orbit
- Detecting transient events
- Issues

Objectives

- Examine the feasibility of sending Cubesats or Smallsats to Venus to perform scientific missions
- Determine the primary technical challenges to be addressed
- Describe significant science that can be accomplished with the resources available for a Venus Smallsat

Challenges

Lifetime and reliability

- Cubesats have limited lifetime and this will need to be extended if they are to be capable of reaching and operating at planetary targets
- Smallsats are more robust but still pose reliability questions

Launch vehicles

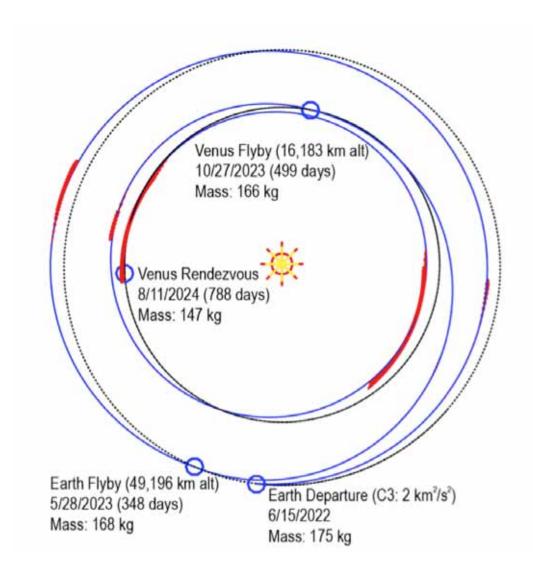
- Dedicated planetary launches are unaffordable because they do not scale well to small sizes.
- Some form of ride share option will be needed

Communications

- Cubesats have a very limited data return capability because of limited antenna aperture size and power
- Smallsats have more capabilities but the cost of tracking support will become a major factor for a small mission

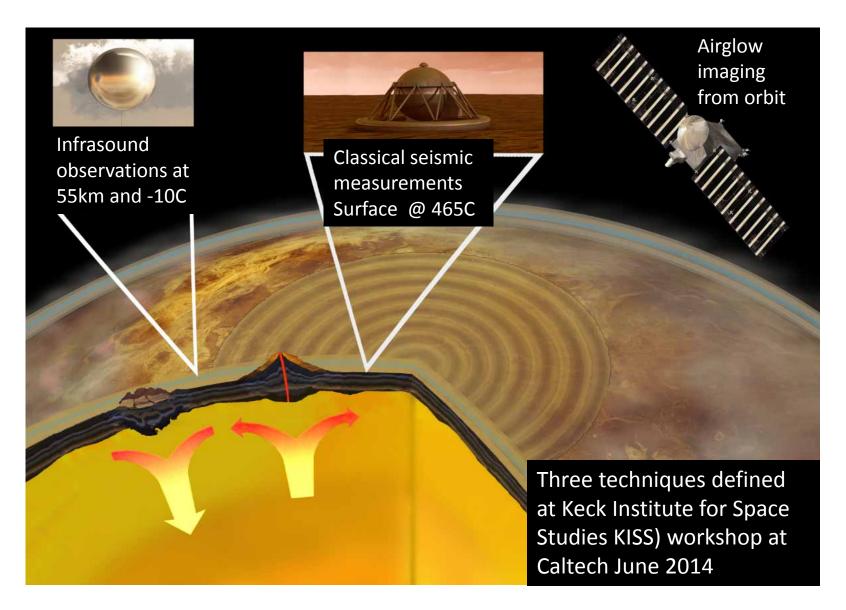
Rideshare Options for Getting to Venus

- Venus Rideshare
 - Venus science mission (orbiter, probe or lander)
 - Venus gravity assist (Sun or outer planet)
- Mars Rideshare
 - Mars Orbiter
 - Mars Lander
- High Earth Orbit/ Lunar Rideshare
 - GEO/GTO
 - Lunar (e.g. EM2)


Launch Options Constrain Venus Mission Architectures

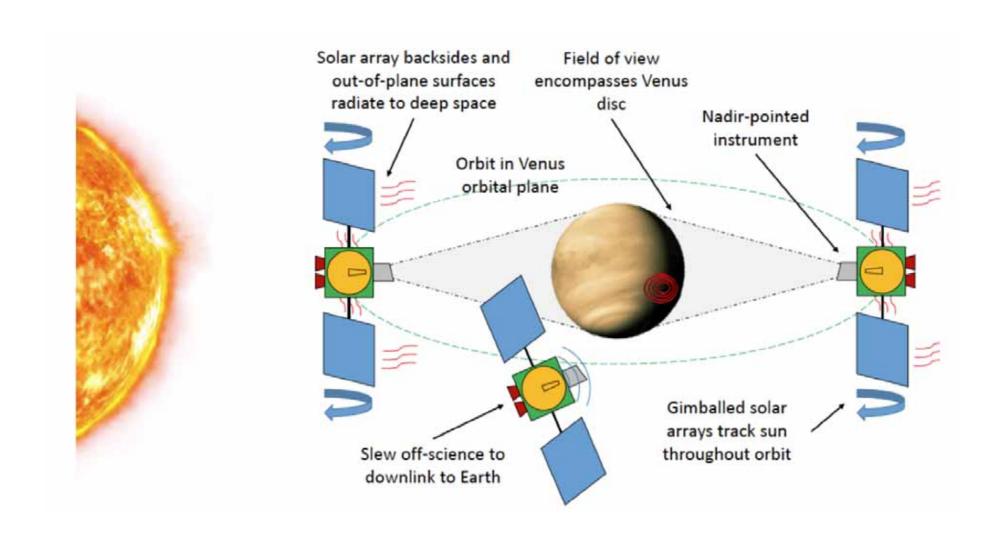
	Ride-Share Option (Venus Hohmann transfer orbits occur every 19 months)		
	Venus (opt 1)	HEO/Lunar (opt 2)	Mars (opt 3)
Candidate launches			
Frequency	Every few years	Several per year	Every two years
Candidate missions	Discovery/NF-4 Europa	Orion(EM-1 or EM-2) Comsat	Mars 2020 or Mars 2022
Propulsion	Chemical	SEP	SEP
Trip Time (months)	4+	24+	36+
Spacecraft	Cubesat or Smallsat	Smallsat only	Smallsat only
Most accessible Venus orbits	Highly elliptical	Circular or L2	Circular or L2
Needed investigations	Characterizing dependence on approach direction & velocity	Trajectory variability with Earth departure date; Earth escape costs	Further exploration of interplanetary trajectories.

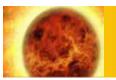
Venus Orbiter - Candidate Trajectory with SEP



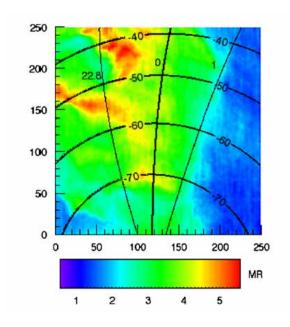
Example SEP trajectory requires 33 kg of Xe + 26 months to rendezvous with Venus.

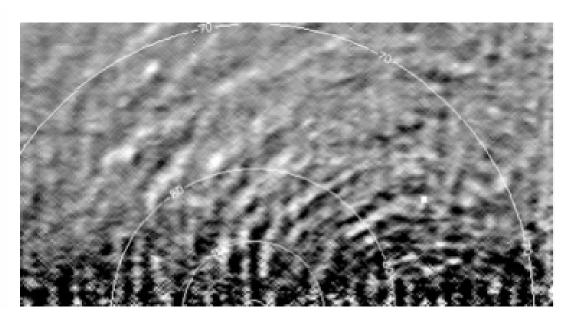
Probing the Venus Interior with Seismic Waves



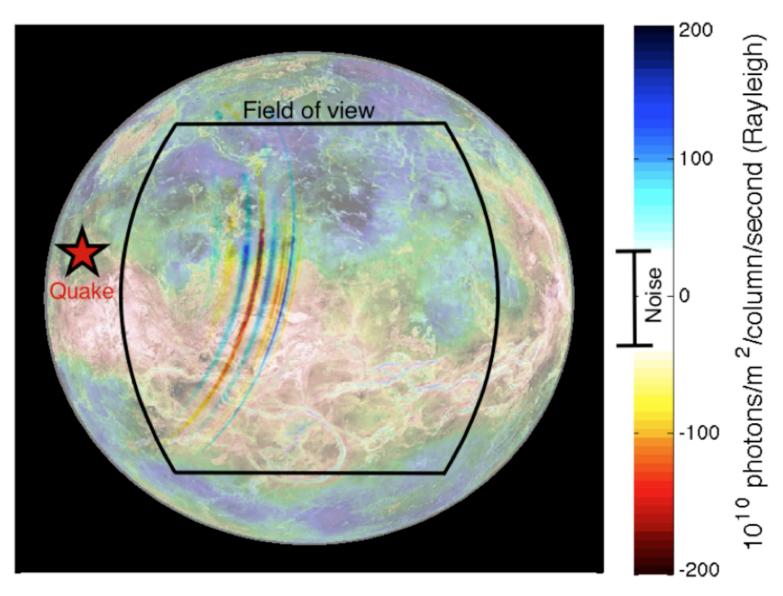


Infrared Monitoring of Venus with Smallsat



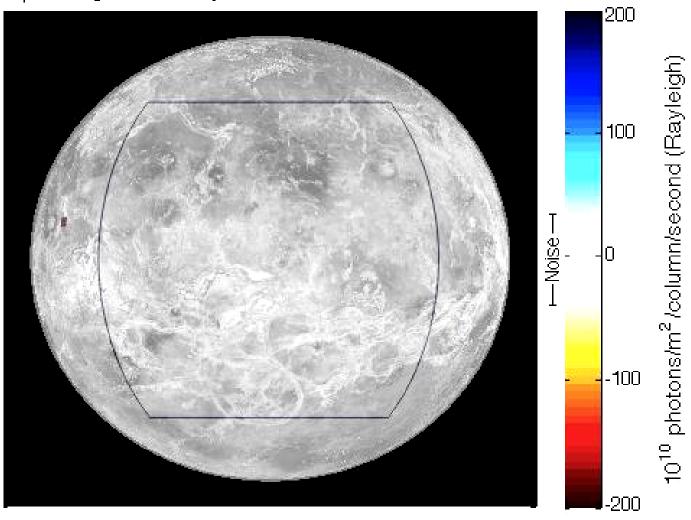


Prime Infrared Signatures


Airglow signal at 1.27 µm from Migliorini, [2011] IR emission at 4.3 μ m signal from Garcia et al 2009 observed by VIRTIS on Venus Express. The image is contrast enhanced so total modulation is less than 1% Waves are gravity waves emanating from the terminator

Rayleigh waves will move across these scenes at 3.5 km/sec or Mach 15 much faster than any other phenomenon

Prediction of Infrared Signal from Seismic Event



Simulation of Signal from Venus Seismic Event

 $1.27\,\mu$ m airglow intensity fluctuation, Time:0 min10 s

On Board Data Processing

- Instrumental data rates required for observing these signatures are about 4 Mb/sec
 - Venus Express supported an average rate of 40kb/sec for 8.6 years
 - Cubesat or smallsat would be much smaller
- Returning all this data to Earth is totally impractical
- Need to perform on board event detection and then store possible events followed by returning those to earth in compressed form
- Techniques have already been developed for detection of optical signatures on Earth from tsunamis but we still need to understand how they are best performed on a small spacecraft

Conclusions

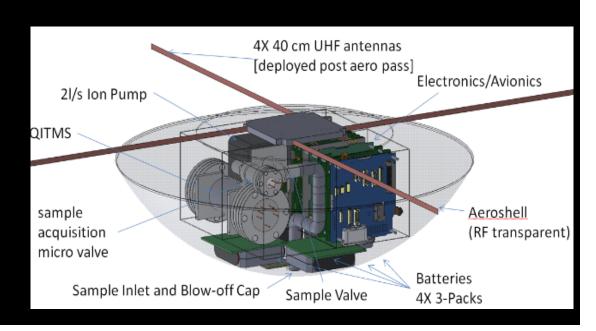
- Affordable solutions exist for getting both Cubesats and Smallsats to Venus
 - For Cubesats, the launch and orbital options are more constrained because there are currently no practical solar electric propulsion systems
 - Cubesat scientific payload capability is also limiting for many areas of science particularly with infrared instrumentation requiring cooling
- Detection of Venus quakes appears to be feasible with complementary infrared sensors at 1.27 µm and 4.3 µm with a small mission concept called VAMOS (Venus Airglow Measurement Orbiter for Seismicity.
- Other kinds of science can be accomplished with Smallsats where the science can be accomplished with limited data return e.g. Cupid's Arrow mission (see Fact Sheet)
- Smallsats in the high circular orbit could also provide a powerful communications relay capability for long duration in situ missions such as balloons and surface seismic measurements

Acknowledgements

- Dr. Steve Bougher (U. Mich)
- Dr. Raphael Garcia (ISAE)
- Dr Jörn Helbert (DLR)
- Dr. Ashley Karp (JPL)
- Prof Philippe Lognonné (IPGP)
- Dr. Sebastien Lebonnois (LMD)
- Prof. Jonathan Makela (U. Illinois)
- Dr Sue Smrekar (JPL)
- Dr. John Snyder (JPL)
- Dr. Brian Sutin (JPL)

- Dr. Elvira Astafyeva (IPGP)
- Dr. Bruce Banerdt (JPL)
- Dr. Melanie Drilleau (IPGP)
- Dr. Jennifer Jackson (CIT campus)
- Balthasar Kenda (IPGP/JPL)
- Dr. Siddharth Krishnamoorthy (Stanford U.)
- Dr. Giovanni Occhipinti (IPGP)
- Dr. Lucie Rolland (GeoAzur)
- Dr. Olga Verkhoglyadova (JPL)
- Dr. Kiri Wagstaff (JPL)

Back Up Slides


• Cupid's Arrow

Cupid's Arrow (PI: C. Sotin, JPL)

Measuring noble gases was rated number 1 investigation of objective A of goal I of the VEXAG "Goals-Objectives-Investigation.

- Drop-off by a mission flying by Venus
- 2. ... Skims through Venus' atmosphere, below the homopause
- 3. ...samples noble gases
- 4. ... measures the abundance of nobles gases and their isotopic ratios
- 5. ... transmits data to Earth (or to mother spacecraft)

