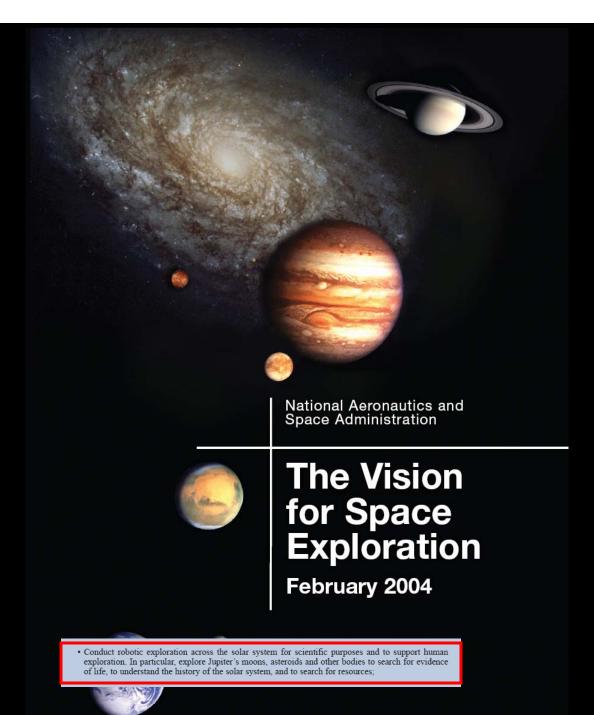


Solar System Exploration

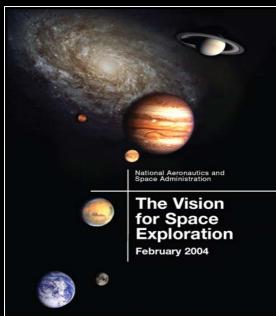
Overview of NASA's 2006 Solar System Exploration Roadmap

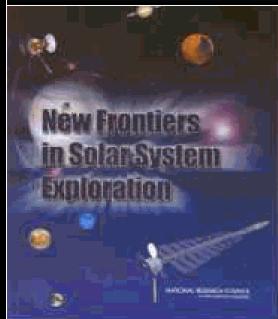
Based on the work of the


Solar System Exploration Roadmap Team

Presented by

Ellen Stofan and Jim Cutts

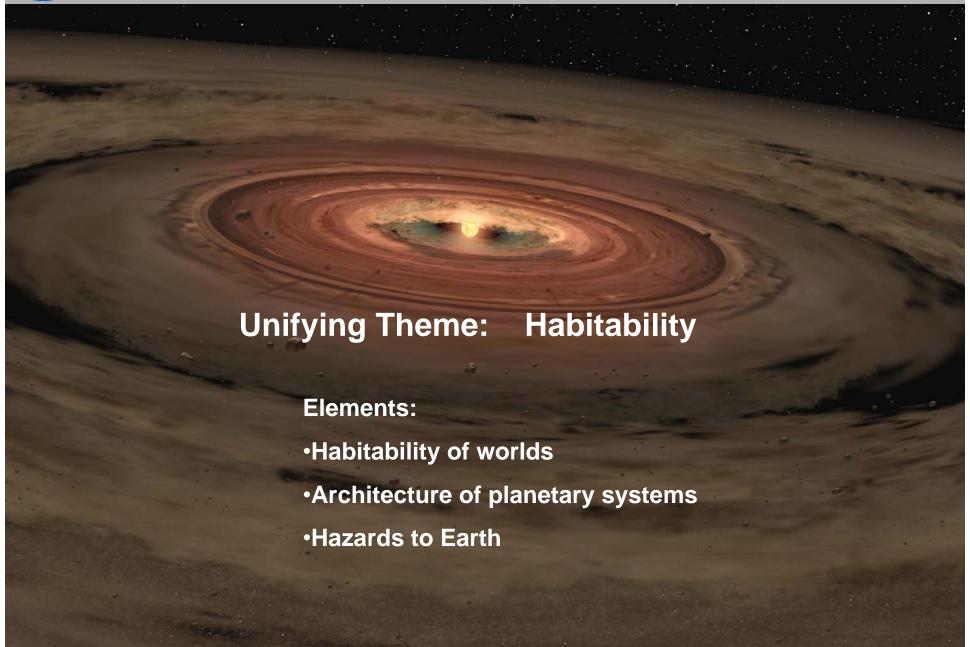

Jan 11, 2007



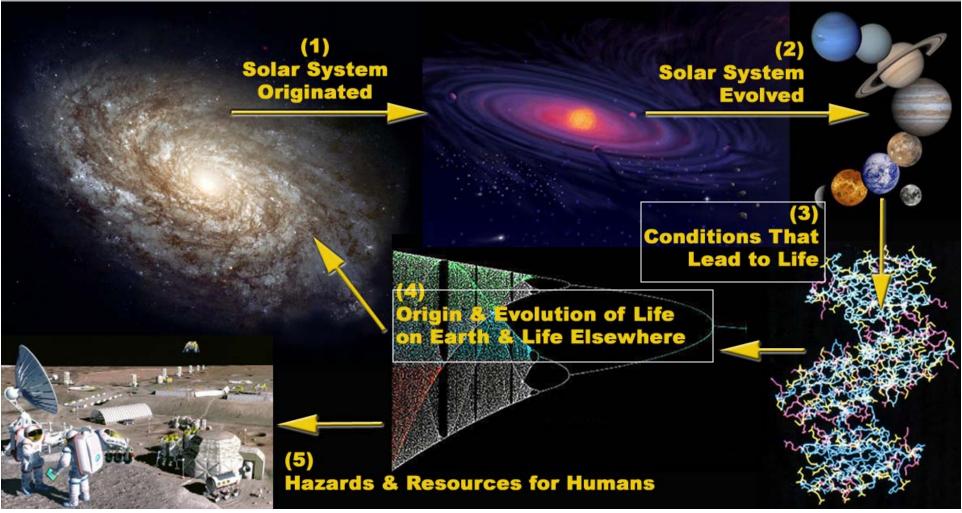
STRATEGIC ROADMAP PROCESS

National Aeronautics and Space Administration

Solar System Exploration


This is the 2006 Solar System Exploration Roadmap for NASA's Science Mission Directorate

September 2006



SCIENCE OBJECTIVES

Solar System Roadmap Investigation Pathways

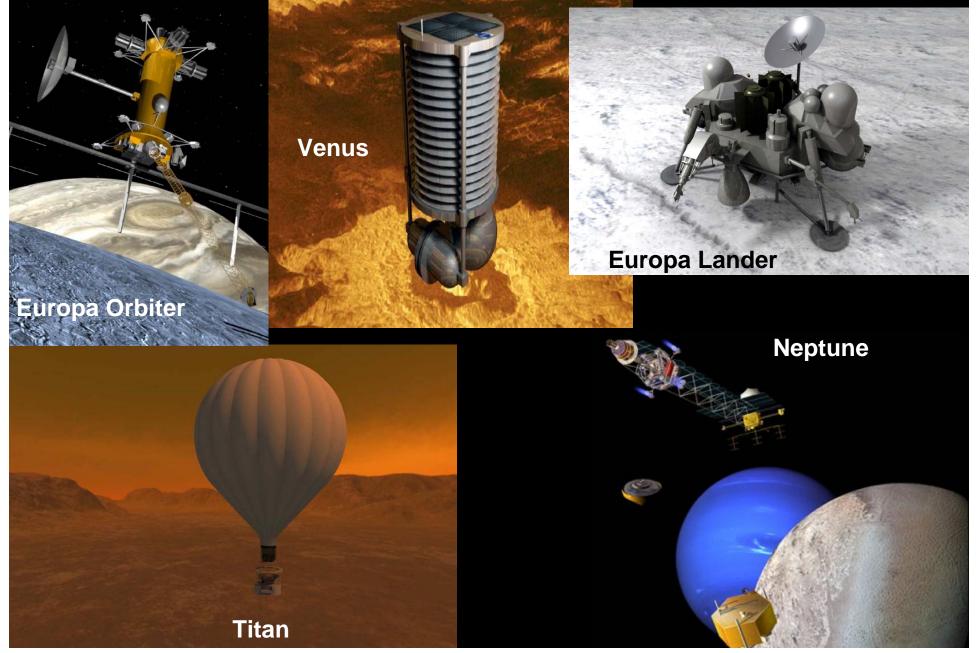
Underlying Theme: Habitability

- · Habitability of worlds
- Architecture of systems
- Hazards to Earth

Scientific Questions

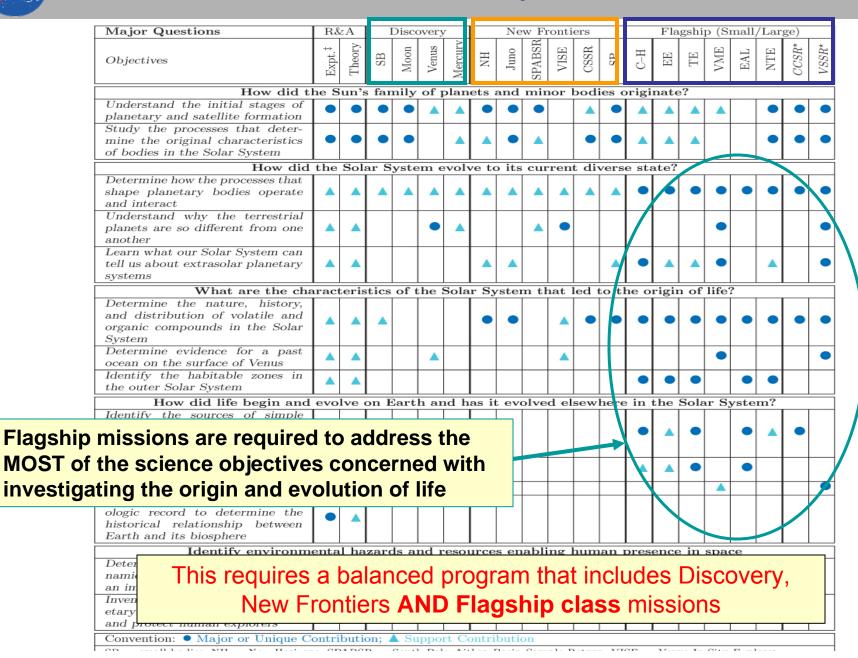
- How did the Sun's family and minor bodies originate?
- How did the Solar System evolve to its current diverse state?
- What are the characteristics of the Solar System the lead to the origin of life?
- How did life begin and evolve on Earth and has it evolve elsewhere in the SS?
- What are the hazards and resources in the Solar System environment that will affect the extension of human presence in space?

9



Missions to address these Science Goals

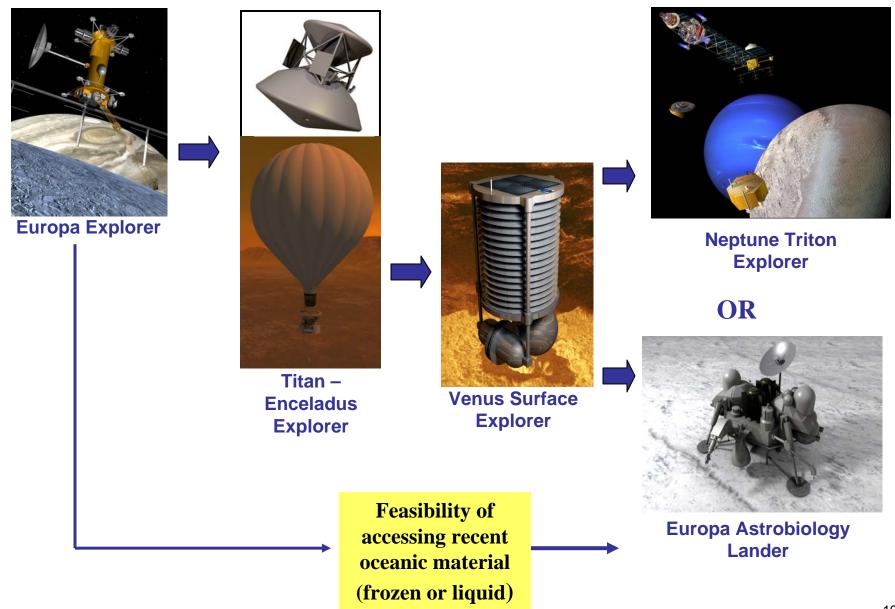
- Discovery
 - Competed missions
 - Cost cap of \$425 (FY06)
 - Science objectives unconstrained
- New Frontiers Program
 - Competed missions
 - Cost cap of \$700M (FY'03)
 - Targets and objectives specified by NASA
- Flagship or Strategic Missions
 - Assigned to a NASA Center
 - Two cost ranges recommended in the Roadmap
 - Small Flagship \$750 to \$1.5B
 - Large Flagship \$1.5B to \$3.0B



SOLAR SYSTEM ROADMAP: FLAGSHIP MISSION TARGETS

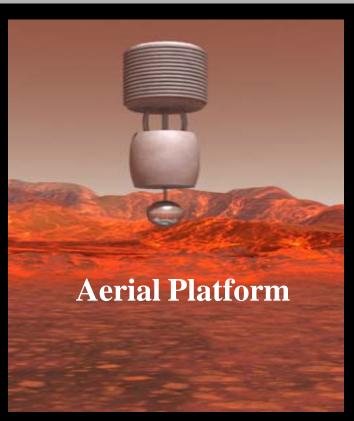
Science Traceability Matrix

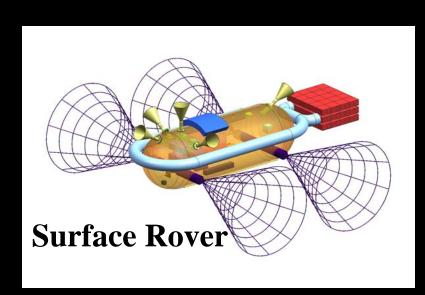
Recommended Sequence of Flagship Class Missions



Missions occur **twice per decade** with launches in **2015**, **2020**, **2025**, and **2030**. Red diamonds are decision points determining proceeding with the mission.

Directed missions.




Solar System Strategic Roadmap Flagship Missions – Nominal Mission Sequence

Venus Mobile Explorer



Recommended Sequence of New Frontiers Missions

Missions occur ~3-4 times per decade. Competed missions.

The ▼ in the New Horizons – Pluto Kuiper Belt Explorer timeline represents the closest approach at Pluto on July 14, 2015

New Frontiers Program

1st NF mission New Horizons:

Pluto-Kuiper Belt Mission (scheduled launch: Jan. 2006)

Pluto-KBO

NASA named New Horizons as the first mission in the series of New Frontiers missions for Solar System Exploration (2006 launch) 2nd NF mission JUNO:

Jupiter Polar Orbiter Mission

2011 launch

3rd NF mission opportunity

Lunar South Pole – Aitken Basin Sample Return

Moon

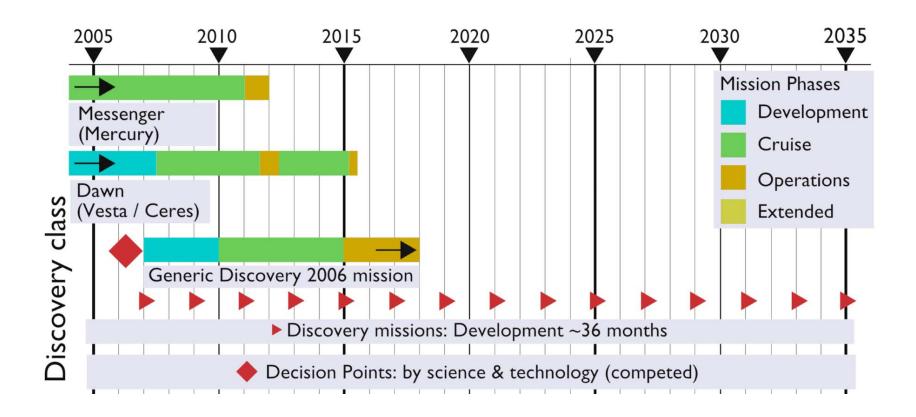
Comet Surface Sample Return (CSSR)

Comets

Venus In Situ Explorer (V<u>ISE)</u>

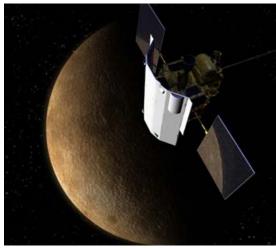
> Would precede Flagship Mission Venus Mobile Explorer

Saturn Flyby with Probes


Saturn

COMPLEX will now be reviewing these candidates and providing Guiding Principles to Planetary Science Division3

Sequence of Discovery Class Missions



Missions occur ~4 to 7 times per decade.

Competed missions, missions are not pre-defined.

Discovery Class Missions

Messenger

Dawn

Origins Spectral Interpretation, Resource Identification and Security (OSIRIS) – an asteroid sample return

PI: Michael Drake of the University of Arizona, Tucson

Project Manager: NASA GSFC

Vesper - Venus chemistry and dynamics orbiter

PI: Gordon Chin of GSFC

Project Manager: NASA GSFC

Gravity Recovery and Interior Laboratory (GRAIL) - lunar orbiter

PI: Maria Zuber of MIT

Project Manager: JPL

Discovery 2006 selections

Status

- Solar System Roadmap is published in electronic form. It can be downloaded at http://solarsystem.jpl.nasa.gov
- NASA's Planetary Science Division recently decided to make print copies which will be distributed in January.
- Science Mission Directorate Strategic Plan, has already been influenced by the roadmap.
- NASA's Planetary Science Division recently announced their intent of initiating studies of strategic flagship missions to four outer planet satellite target: Europa, Titan, Enceladus and Ganymede.

SSE ROADMAP TEAM

- Roadmap teams members for the
 - SRM3-2005, and
 - SRM3-2006
- Co-chairs:
 - SRM3-2005 Phase 1:
 Orlando Figueroa
 Scott Hubbard
 Jonathan Lunine
 - SRM3-2006 Phase 2:
 Jonathan Lunine
 James Cutts
 Melissa McGrath
- Team members from: NASA, Academia, Industry

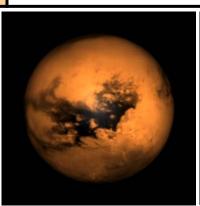
2005	2006	Name	Affiliation							
Co-Chairs										
A		Orlando Figueroa	NASA Science Mission Directorate							
A	•	G. Scott Hubbard	NASA Ames Research Center							
A	A	Jonathan Lunine	University of Arizona Lunar & Planetary Laboratory							
Members										
•	Andrew Christensen Northrop Grumman									
•		Jerry Chodil	Ball Aerospace (retired)							
•	•	Ben Clark	Lockheed Martin Astronautics							
•		Greg Davidson	Northrop Grumman							
•		David DesMarais	NASA Ames Research Center							
•	•	Douglas Erwin	National Museum of Natural History							
•		Wes Huntress	Carnegie Institution of Washington							
•	•	Torrence V. Johnson	Jet Propulsion Laboratory							
•		Thomas D. Jones	Consultant							
•	A	Melissa McGrath	NASA Marshall Space Flight Center							
•	•	Karen Meech	University of Hawaii							
•	•	John Niehoff	Science Applications International Corporation							
•	•	Robert Pappalardo	University of Colorado; Jet Propulsion Laboratory							
•	•	Ellen Stofan	Proxemy Research, Inc.							
Meenakshi Wadhwa The Field Museum										
			Planning and Integration Support							
•		Carl Pilcher	Directorate Coordinator, Designated Federal Official							
•		Judith Robey	Advanced Planning and Integration Office Coordinator							
			Ex Officio and Liaison							
•		Andrew Dantzler	NASA Science Mission Directorate							
		Heidi Hammel	Space Science Institute, Education Roadmap Committee							
			Liaison							
•		Chris Jones	Jet Propulsion Laboratory							
•		Jason Jenkins	NASA Exploration Systems Mission Directorate							
•		Gregg Vane	Jet Propulsion Laboratory							
•		Charles Whetsel	Jet Propulsion Laboratory							
			netary Program Support							
•	A	James A. Cutts	Jet Propulsion Laboratory							
	•	Tibor Balint	Jet Propulsion Laboratory							
	•	Andrea Belz	Jet Propulsion Laboratory							
Craig Peterson			Jet Propulsion Laboratory							
	•	Philippe Crane	NASA HQ							
	•	Curt Niebur	NASA HQ							
▲ — co-chairs ; • — team members										

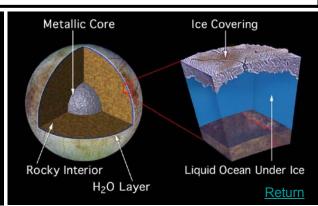
Backup Charts

Science Questions

Question Three: What are the characteristics of the Solar System that led to the origin of life?

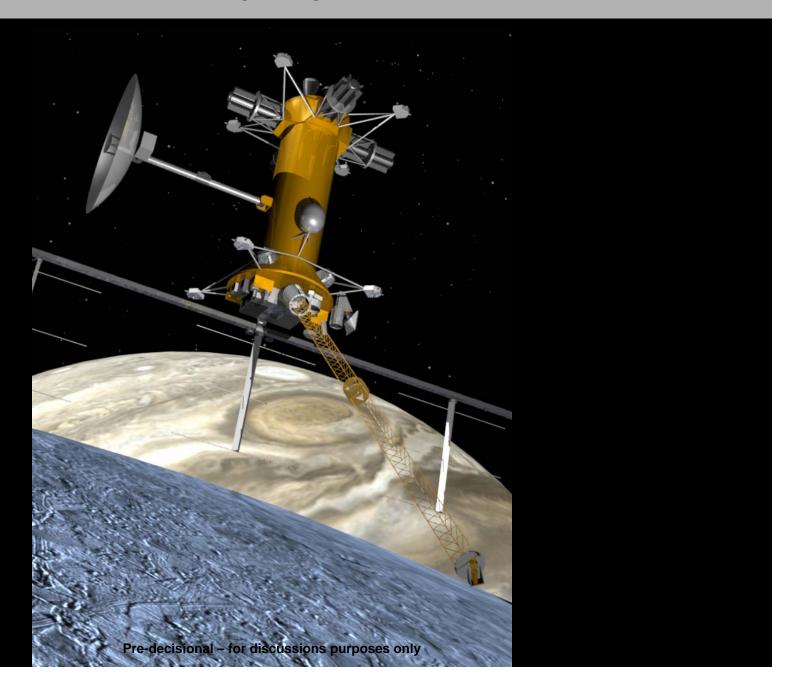
Objectives	Investigations and Measurements			
Determine the nature, history, and distribution of volatile and organic compounds in the Solar System	 Analyze the chemical and isotopic composition of comets. Determine Jupiter's water abundance and deep atmospheric composition. Determine the chemical and isotopic composition of Venus' surface and atmosphere. Determine the distribution of organic material on Titan and Enceladus. 			
Determine the evidence for and age of an ocean on the surface of Venus	 Search for granitic and sedimentary rocks. Analyze the mineral composition of hydrated silicates and oxidized iron. Investigate the interplay of volcanic activity and climate change. 			
Identify the habitable zones in the outer Solar System	 Characterize the geothermal zones on Enceladus. Search for volcanically—generated and impact—generated hydrothermal systems on Titan. Confirm the presence and study the characteristics of Europa's subsurface ocean. Conduct comparative studies of the Galilean satellites. 			

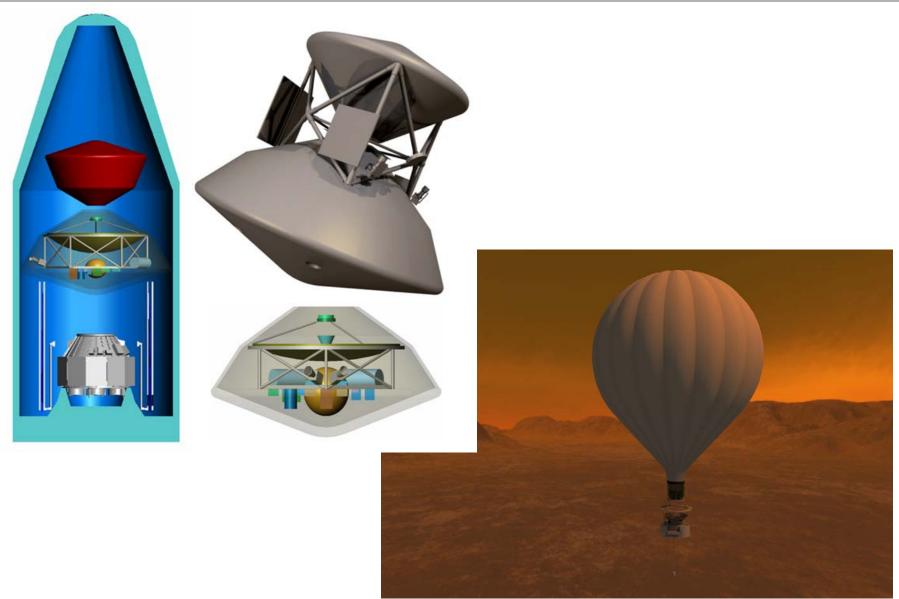




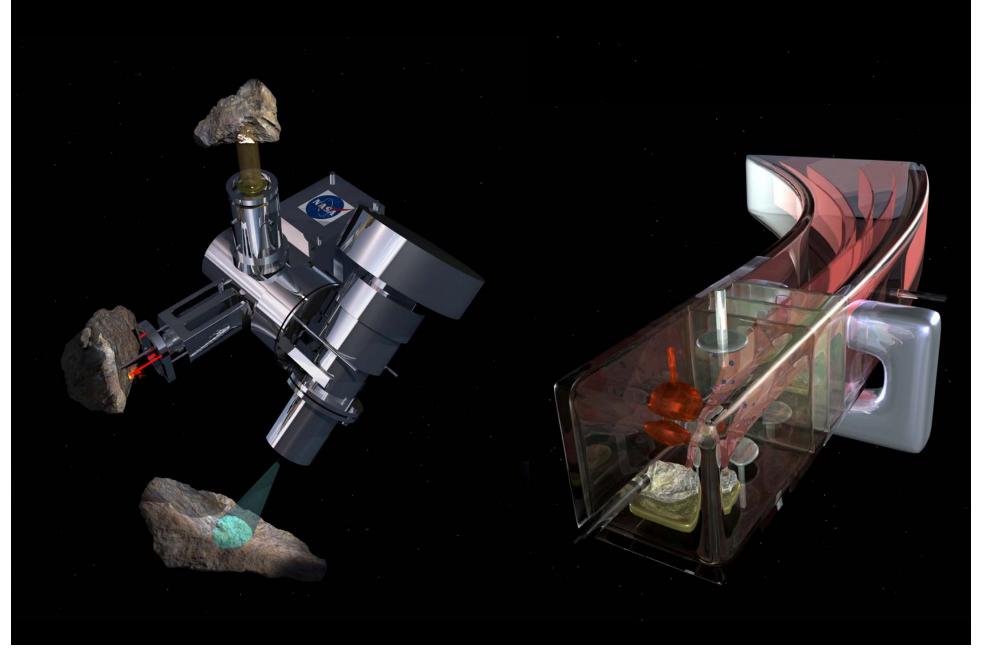
Question Four: How did life begin and evolve and has it evolved elsewhere in the Solar System?

Objectives	Investigations and Measurements			
Identify the sources of simple chemicals important to prebiotic evolution and the	Determine the chemical composition of comets and Kuiper Belt objects.			
emergence of life	 Study surface organic deposits on Titan, and interaction of surface with atmosphere. 			
Search for evidence for life on Europa, Enceladus, and Titan	 Identify and study organic deposits from the subsurface ocean on Europa. 			
	 Study biomarker signatures in surface organics in active/recently active areas on Titan. 			
	 Sample subvent fluids for biological activity. 			
Search for evidence for past life on Venus	 Search Venus samples for chemical and structural signatures of life. 			
Study Earth's geologic and biologic record to determine the historical	Investigate biological processes on the early Earth through multidisciplinary studies.			
relationship between Earth and its biosphere	Examine the records of the response of Earth's biosphere to extraterrestrial events.			





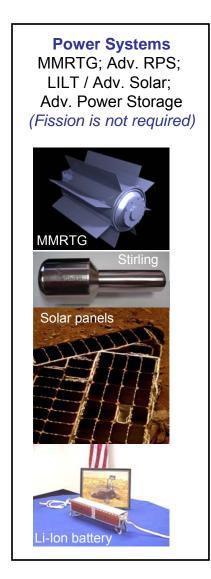
Europa Explorer

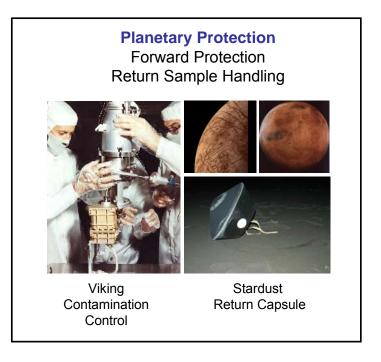


Titan Enceladus Explorer

TECHNOLOGY DEVELOPMENT NEEDS

Technology

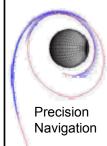

- Successful execution of the Roadmap's prioritized sequence of missions requires a coordinated technology development program synchronized with mission plans
- Investment in power generation, technologies for extreme environments and aerocapture technology would
 - reduce costs for multiple missions
 - enable exploration of targets of greatest interest to the habitability theme driving the roadmap
- An early investment in technology development would have a dramatic impact on the cost and risk of the recommended Flagship mission set.


Systems Technologies

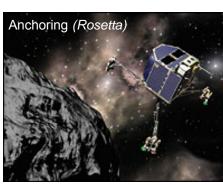
CommunicationsDSN & Proximity comm.

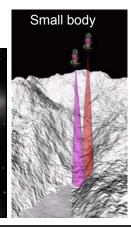


In-Situ Exploration Technologies

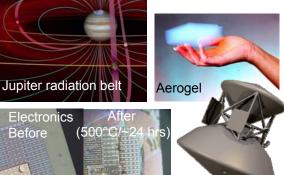

Mobility

Aerial mobility (Titan, Venus); Surface (Titan, Venus, Europa); Subsurface exploration & sampling



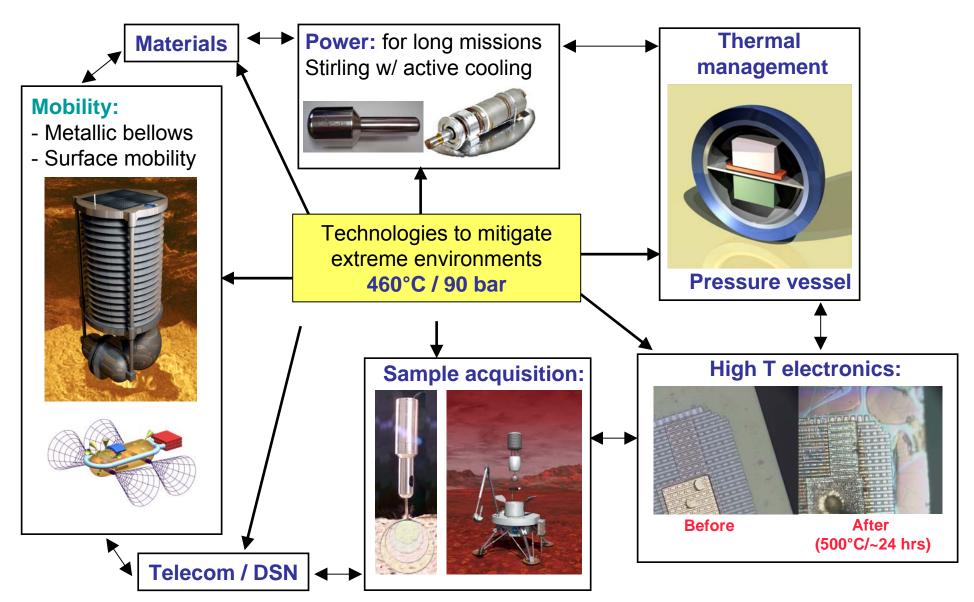

Entry – Descent – Landing (EDL)

Precision navigation & landing; Approach guidance; Hazard avoidance; Anchoring to small bodies

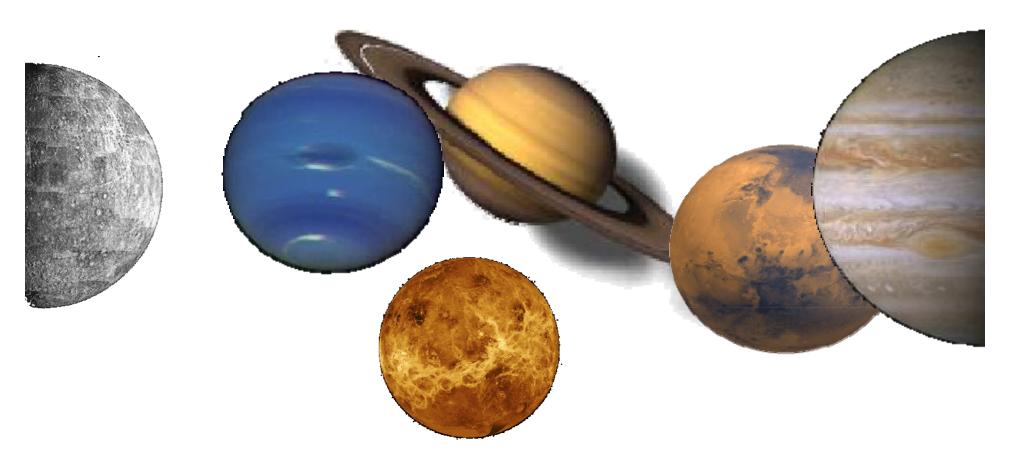


Extreme Environments

High pressure & temperature; Low temperature; High radiation; High entry heat flux



Venus In-situ Exploration Technologies



Science Instruments

INTERDEPENDENCIES

Major Goal of Road Map process was to understand interdependencies WITHIN the solar system exploration roadmap and WITH OTHER ROADMAPS – particularly those for Mars and the Moon

Interdependencies Among Missions Classes

- Within the Flagship Program
 - Cassini → Titan / Enceladus Explorer
 - Europa Explorer → Europa Astrobiological Laboratory
 - Titan Explorer → Neptune–Triton Explorer (re: Aerocapture)
- Between the New Frontiers and Flagship Programs
 - Venus In Situ Explorer (New Frontiers) → Venus Mobile Explorer (FS) (re: Extreme Environments technologies)
 - Saturn Flyby with Shallow Probes (New Frontiers) → Neptune—
 Triton Explorer (FS) (re: Thermal Protection Systems)
 - Comet Surface Sample Return (New Frontiers) → Comet Cryogenic Sample Return (FS)
- Among the Discovery, New Frontiers, and Flagship Programs
 - Dawn → Titan Explorer & Neptune–Triton Explorer (re: SEP)
 - Deep Impact → Comet Surface Sample Return

Interdependences with Mars and Lunar Robotic Programs

SSE & Mars Exploration Program

- Mars Reconnaissance Orbiter → Europa Explorer (re: remote sensing; high resolution imaging; radar sounding; communications)
- Mars Science Laboratory → Titan Explorer (orbiter) (re: active trajectory control; RPS thermal management; New Millennium flight demonstration for aerocapture)
- Mars Science Laboratory → Titan Explorer (aerial platform)
 (re: sample acquisition & processing; autonomous control; RPS)

SSE & Robotic Lunar Exploration Program

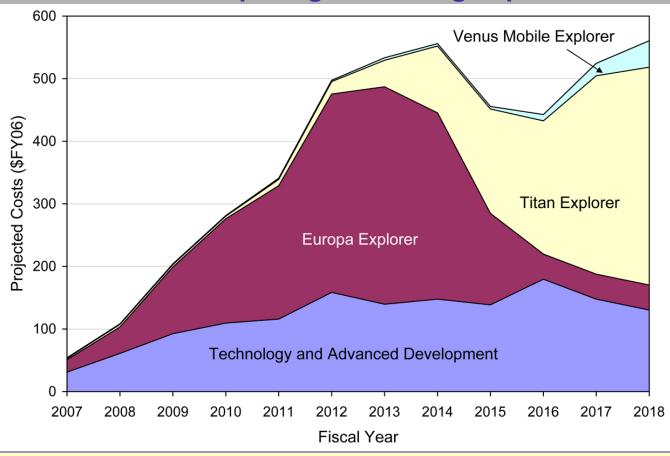
- Lunar Reconnaissance Orbiter (re: instrument development)
- Lunar Crater Observation and Sensing Satellite (LCROSS)
 (re: impactors for Europa, outer planet satellites)

ROADMAP IMPLEMENTATION

Key Recommendations

- A Flagship program should be implemented with missions every five years comprised of:
 - Small Flagship missions up to \$1.5B (\$FY06)
 - Large Flagship missions up to \$3.0B (\$FY06)
- To help support the cost of this program the flight rate of cost capped missions recommended by the NRC Decadal Survey might be reduced
 - Discovery from 7 to 4 per decade
 - New Frontiers from 4 to 2 per decade
- The highest priority Flagship mission is Europa Explorer
- NASA should attempt to establish a wedge for funding a Europa Explorer new start and a technology program.

Trade Space of Flight Rates


	Missions per Decade							
Mission Class	NRC DS	SSE-RM 2003	SRM3-2006 (This Roadmap)					
	2003		Option A	Option B	Option C	Option D		
Discovery	7	7	7	7	6	4		
New Frontiers	4	3	4	4	3	2		
Small Flagship	8	8	0	2	1	0		
Large Flagship	1	8	1	0	1	2		
Prometheus	8	1	8	8	8	8		
Mississ Olses	Cost Per Decade (\$B)							
Mission Class	NRC DS	SSE-RM 2003	SRM3-2006 (This Roadmap)					
	2003		Option A	Option B	Option C	Option D		
Discovery	2.8	2.8	3.0	3.0	2.6	1.7		
New Frontiers	2.8	2.1	3.0	3.0	2.3	1.5		
Small Flagship	8	8	0	3.0	1.5	0		
Large Flagship	N/A	8	3.0	0	3.0	6.0		
Prometheus	\otimes	11.0	\otimes	8	\otimes	\otimes		
Total Cost per Dec	9.0	9.0	9.3	9.2				

Note: * The cost per decade includes direct mission costs only and not the R&A and technology development programs.

A balanced program can be achieved in multiple ways, that includes Discovery, New Frontiers and Flagship class missions

Investment Needs for SSE Roadmap Program of Flagship Missions

Baseline scenario assumption: first mission — Europa Explorer — is launched in FY15.

The technology and advanced development investment is targeted primarily at the second and third missions, Titan Explorer and Venus Mobile Explorer, which require investments prior to the key decision points in 2010 and 2015.

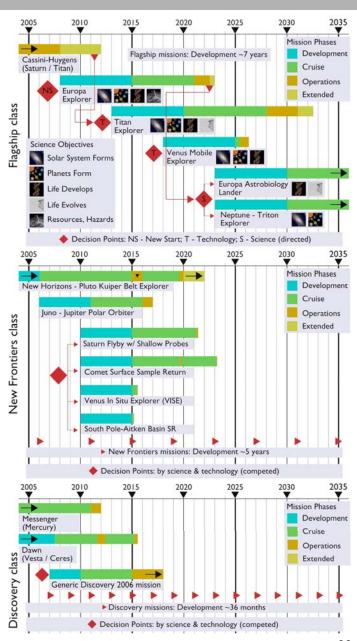
The total annual budget would include other programs (e.g., Discovery, New Frontiers); Research and Analysis; and Education & Public Outreach; in addition to this Flagship program investments

Future Challenges

- Managing a healthy debate in the planetary science community on the priorities for Flagship missions.
- Developing a stronger consensus in the science community on the importance of a long term strategy to for future progress in solar system exploration
- Getting a solar system exploration Flagship mission and an effective technology program in the NASA budget

Backup Charts

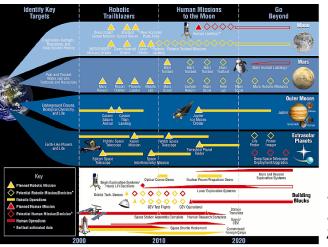
- Consolidated Road Map
- Foundation Materials

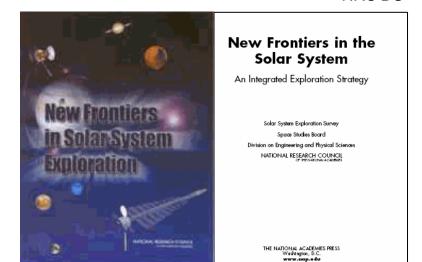


Consolidated Roadmap

- Strategic Roadmap Process
- Science Objectives
- Proposed Missions
- Technology Development for SSE
- Research and Analysis (R&A)
- Education and Public Outreach (E/PO)
- Interdependencies
- Roadmap Implementation
- Conclusions and Recommendations

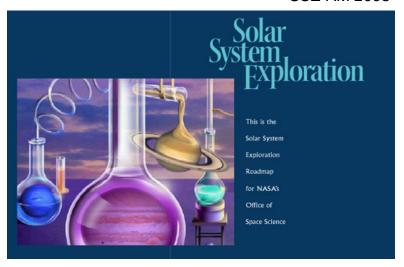
Reference:


SSE Roadmap Team, "Solar System Exploration; This is the Solar System Exploration Roadmap for NASA's Science Mission Directorate," National Aeronautics and Space Administration, Science Mission Directorate, Planetary Science Division, Report Number: JPL D-35618, September 15, 2006 Website: solarsystem.nasa.gov



Solar System Exploration Roadmap Foundation Materials

- New Frontiers in the Solar System NRC Decadal Survey of 2003
 - Science strategy
 - First Decade recommended mission set
 - Second Decade mission options
 - Technology needs
- Solar System Exploration Roadmap of 2003
 - Accepted most but not all Decadal Survey recommendations
- Vision for Space Exploration 2004
- Design Reference Missions set
 - reflecting an updated assessment of the range of mission candidates



Vision for Space Exploration 2004

SSE RM 2003

NRC DS

