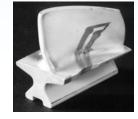

HARSH ENVIRONMENT ELECTRONICS AND SENSORS APPLICATIONS

Gary W. Hunter, NASA Glenn Research Center NASA GRC HAS VAST RANGE OF HIGH TEMPERATURE EXPERIENCE


- NEEDS:
 - > OPERATION IN HARSH ENVIRONMENTS
 - > RANGE OF PHYSICAL AND CHEMICAL MEASUREMENTS
 - > INCREASE DURABILITY, DECREASE THERMAL SHIELDING, IMPROVE IN-SITU OPERATION
- RESPONSE: UNIQUE RANGE OF HARSH ENVIRONMENT TECHNOLOGY AND CAPABILITIES
 - > STANDARD 500C OPERATION BY MULTIPLE SYSTEMS
 - > TEMPERATURE, PRESSURE, CHEMICAL SPECIES, WIND AVAILABLE
 - > HIGH TEMPERATURE ELECTRONICS TO MAKE SMART SYSTEMS

1998 R&D 100 Award

2004 R&D 100 Award

1995 R&D 100 Award

1991 R&D 100 Award


• ALL-IN-ONE SHOP FOR HARSH ENVIRONMENT SYSTEM APPLICATIONS

VENUS SCIENTIFIC MISSIONS LIMITED BY AVAILABILITY OF HARSH ENVIRONMENT SENSORS AND ELECTRONICS NASA GRC HAS THE BASIC TOOLS TO HELP ENABLE NEW MISSIONS

EXAMPLE POSSIBLE MISSION: Venus Integrated Weather Sensor (VIWS) System

Sensor Suite to Monitor Venus Weather Conditions including: Data Processing and Communication, Wind Flow, Seismic, Pressure/Temperature/Heat Flux, Chemical Environment

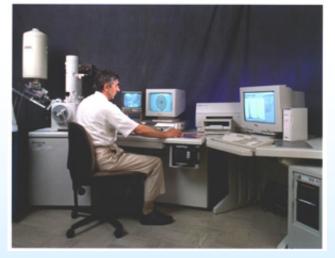
BACK UP SLIDES

NASA Glenn Microsystem Development Facilities

- Significant In-House Capabilities for a Range of Micro/Nano Sensor and Electronics Development
- Capabilities Range From Semiconductor Material and Device Fabrication to Packaging and Testing
- State-Of-The-Art Facilities Leading to World Leading Technologies

SiC Chemical Vapor Deposition (CVD) Epitaxial Growth Laboratory

Microsystems Fabrication Clean Room

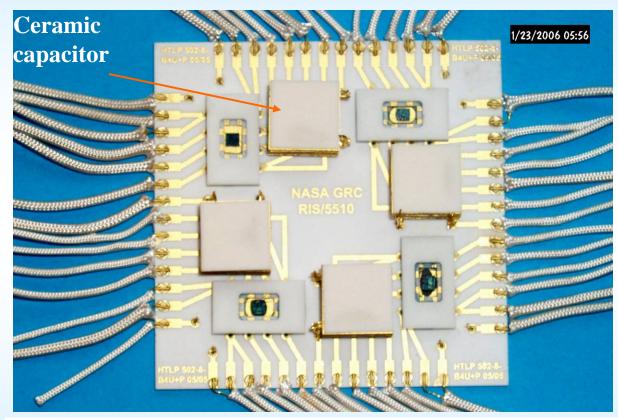

Microdevices Characterization Facilities

World's Most up-to-date Facility of Its Type

3000 Square Foot Clean Room Space for Electronic-Grade Oxides and MEMS

A Range of Characterization and Testing Equipment For Device Development

HARSH ENVIRONMENT VENUS MISSION REQUIREMENTS


- SURFACE CONDITIONS
 - **> TEMPERATURE: 450-500 C**
 - > PRESSURE: 90 bar PREDOMINATELY (~100 TIMES EARTH)
 - > SULFURIC ACID PARTICLES IN CLOUD DECK
 - > 96.5% CO2 and 3.5% N2; Trace Gases include H2O, SO2, CO, HCL, H2, and HF
- SOME PARAMETERS OF INTEREST: TEMPERATURE, PRESSURE, CHEMICAL SPECIES, FLOW (WIND)
- TEMPERATURE CONTROL INCREASES SYSTEM COMPLEXITY/RISK TO MISSION
- NEED TO SHIELD SYSTEM FROM EXTREME ENVIRONMENTS YIELDS INCREASE
 IN SIZE AND WEIGHT
- LIMITED INFORMATION AVAILABLE FROM IN-SITU SYSTEMS DUE TO HARSH ENVIRONMENTS INVOLVED
- SCIENTIFIC COMMUNITY: LACK OF VIABLE HARSH SENSOR SYSTEMS SENSORS AND ELECTRONICS FOR IN-SITU CHARACTERIZATION
- IN SOME AREAS, NASA GRC HAS ALREADY TECHNOLOGY SOLUTIONS ISSUES NEEDED BY SMD FOR HARSH ENVIRONMENT APPLICATIONS

Demonstration of 500°C AC Amplifier Based on SiC MESFET and Ceramic Packaging – Test assembly 2006

Optical Picture of the Test Assembly

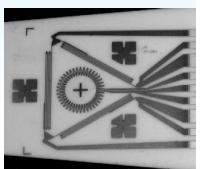
- The test assembly includes four testing circuit units
- Common Source AC amplifier tested at 500 C for over 1100 hours

SiC-BASED PRESSURE SENSORS

- SIC HAS EXCELLENT MECHANICAL PROPERTIES FOR USE AS A HARSH ENVIRONMENT PRESSURE SENSOR (T > 500 °C, SILICON UNDERGOES PLASTIC DEFORMATION)
- FORM DIAPHRAM OF SIC AND INTEGRATE WITH ELECTRONICS
- WIDE RANGE OF APPLICATIONS
 AERONAUTIC ENGINE APPLICATIONS
 AUTOMOTIVE APPLICATIONS
 MATERIAL PROCESSING
- ENGINE OPERATION DEMONSTRATED AT 500 C
- CAN BE INTEGRATED WITH FLOW VELOCITY AND TEMPERATURE FOR A VENUS HIGH TEMPERATURE WEATHER MONITORING DEVICE

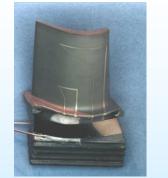
500 °C SiC pressure sensor

SiC High Operating Temp. Probe (HOTProbe): SiC chip to simultaneously measure flow velocity, pressure, and temperature;

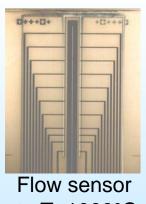

Real World Application: Pressure Sensor Installed in Engine Test

Thin Film Physical Sensors for High Temperature Applications

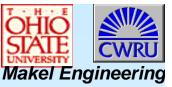
• Advantages for temperature, strain, heat flux, flow & pressure measurement:


- Negligible mass & minimally intrusive (microns thick)
- Applicable to all materials including ceramic based materials
- Minimal structural disturbance
- Intimate sensor to substrate contact & accurate placement
- Multiple sensor fabrications, full-field measurement
- High durability
- Capable for operation to very high temperatures (> 1000°C)
- Multifunctional smart sensors being developed
- Can Be Used To Measure Venus Surface Conditions as well as Monitor Vehicle Conditions

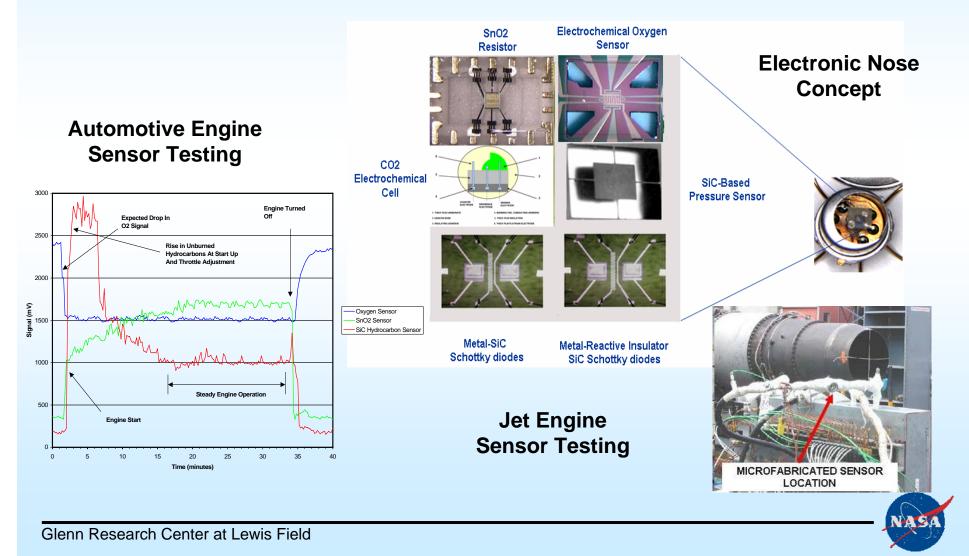
Multifunctional Sensor Array


PdCr strain sensor On Alloy to T=1000°C

Pt- Pt/Rh temperature sensor to T=1200°C



Heat Flux Sensor Array to T=1000°C



HIGH TEMPERATURE GAS SENSOR ARRAY HIGH TEMPERATURE ELECTRONIC NOSE

- High Temperature MEMS Based Gas Sensors Designed for Selective Detection
- Multiple Chemical Species Can Be Measured/Sensors Can Be Tailored for the Application
- Multiple Species of Interest To Venus Applications Can Be Detected

