
National Aeronautics and Space Administration

GRC Extreme Environments Facility Tibor Kremik, NASA Glenn Research Center Overview and Status - August, 2011

Characteristics

Specs for existing US facilities and the new NASA GRC Facility

Location	Volume (ft³)	Pressure (bar)	Temperature (°C)	Species	Material of Construction	Dimensions (ft by ft)
MIT	0.005	1 to 200	20 to 700	CO ₂	Inconel 625	0.04 by 1
MIT	0.08	1 to 200	20 to 700	CO ₂	Inconel 625	0.08 by 4
NASA GSFC	0.52	1 to 95.6	20 to 467	CO ₂ , N ₂	Stainless Steel 316	0.41 by 1
NASA JPL	1.53	1 to 92	20 to 500	CO ₂ , N ₂	Stainless Steel	0.33 by 4.5
Georgia Institute of Technology	4.22	1 to 100	20 to 343	CO ₂ , N ₂	Stainless Steel 304	1.16 by 1
NASA Glenn **	113	10 ⁻³ to 103*	20 to 537*	All	Inconel liner, SS304 hull	3 by 4

**Plans for adding cryo capability - the facility operating range can be extended to include cryogenic temperatures (-150C) and hard vacuum (10⁻¹⁰ bar).

Test Chamber Details

- ASME stamped vessel rated for 1500 psig and 500 °C (932 °F)
- 3' diameter X 4' length
- 2" Stainless Steel 316
 - Supports pressure
- 1/8" Inconel 625 liner
 - Chemical protection
- 14 tons
- Flat 10" head

National Aeronautics and Space Administration

		Final Double Wall Design					
Pres	sure	Temperature					
Min	Max	Min	Max				
10 ⁻¹⁰ bar	103 bar	Atmospheric	537 °C				
Chemical							
7 corrosi	ve/acidic	2 extreme corrosive					
Computer controlled altitude adjustment, up to 1 m/s recirculation							

3" 1500 lb

Weld Neck

3' x 4'

Internal

Lined with Inconel 625 Removed for 4"

viewport

Test Chamber Details

- 9 gas streams
- Corrosion resistant
 - Inconel 625
 - 316 Stainless 4Ra finish
- H₂O bubbler adds water vapor
- Thermal mass flow controllers
- Pressure sensors
- PLC with touch screen
 - Input gas concentrations
 - Monitors temp, pressure, mass flow
 - Capable of 5 ppb ±0.7%
 - ISO 17025 certified calibration

Polycontrols Gas Mixing System

- Initial capability:
 - Full Venus Environment, Jupiter thermosphere, Mars equator, Io near volcanic vents, etc.
- Capability with cold wall:
 - Mars, Jupiter (to -78 km), Io, Europa, Ganymede, Titan, etc.

Potential Additions and Testing

- Chamber additions can utilize existing PI&D Would offer potential for full scale testing
 - » Fill and purge system
 - » Mixing system
 - » Leak/Low oxygen detection
 - » Exhaust scrubbing system
 - » Expanded data acquisition
- Circulation and Cold wall

Testing Process

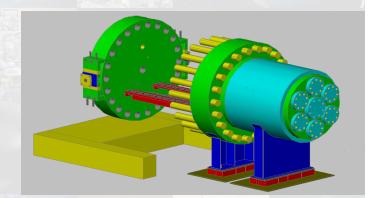
- •Test article fixed to standard mounting plate
- •Transported from 14' bay door through 6' double doors on vented clean room to 3' x 4' test chamber
- •Mounting plate affixed to test article tray and vessel sealed

•Filling and mixing process

•All gas cylinders route to the mixer

•The mixer outputs to an accumulator where pressure is charged with CO₂ up to \sim 514 psi and pumped into vessel

•Mixture is fed to the vessel, heated, and test runs for up to 1 year


•Atmosphere is vented to scrubber to neutralize chemicals

- •System is nitrogen purged and drawn down to vacuum
- •Chamber refilled with air and opened to remove article

Status

Leveraging NASA and GRC investments

- ✓ Have dedicated space facility prepared
- ✓ Have a separate control room
- Most (90% plus) of the needed equipment (for minimum operations) is purchased – most already being installed at GRC
- ✓ Main chamber procured and in fabrication
- ✓Completed Gas Mixer initial safety testing
- ✓ Procured safety systems
- ✓ Designed Gas Cabinet ductwork
- ✓ Floor loading checks and design completed
- ✓ Developing gas system controls for PLC
- ✓ Setting equipment
- ✓ IF funding is available could be ready next summer 2012

Images

National Aeronautics and Space Administration